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Abstract

This report presents a data-driven analysis of cancer waiting times in Scotland. We anal-
ysed open data provided by Public Health Scotland with records of the numbers of patients
that were referred and/or treated within 31 and 62 days in different regions. Our goal when
analysing this data was twofold. First, we aimed to explore the effect of the COVID-19 pan-
demic on the number of cancer referrals and diagnoses. Secondly, we aimed to identify
the important factors underlying variation in cancer referrals and diagnoses, such as region
or cancer type. Most of our work relied on the application of Generalised Linear Models.
Overall, this report shows that the pandemic resulted in a reduction of rates of referral and
diagnosis of cancer in Scotland. Moreover, our analysis suggests that these are significantly
determined by region, cancer type and age. However, the open source data provided by
Public Health Scotland is not sufficient to draw conclusions on the cancer waiting times in
Scotland.

For model files and assets please see:
www.github.com/SofieBV/PHS-project
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Part I

Introduction

"Medicine is a science of
uncertainty and an art of
probability."

William Osler

Health, illness and disease have concerned humans since their origins, with earliest medical
traditions dating back to Ancient Greece. Approaching the end of the 19th-century and the
rapid growth of cities, the need for systematic sanitary measures led to the beginning of pub-
lic health measures, as well as the documentation of developed medicines, methodology and
treatments [10]. The ability to document medical practice and medical records progressed
through the 20th-century, with larger studies commencing. This was the start of the "big-data"
age of medicine. By 1952 accurately recorded super-studies, such as Doll et. al’s study on the
smoking habits of male doctors [4], were able to be carried out. In Doll’s case, the work would
later go on to prove statistically significant evidence that smoking was a cause of lung cancer
(as early as 1956). Similar studies pointed the potential of recording and analysing medical
data to improve treatment strategies and public health measures.

Performing systematic analysis of public health data is important to understand the state of
the system, inform policy making and forecast future demand. Public Health Scotland (PHS),
the organization leading health data management in Scotland, has recognized the potential
stored in the data they collect. Consequently, they aim to collaborate with academics and stu-
dents from both The University of Edinburgh and Heriot Watt University to analyse their data
sets. This project is the first result of this collaboration, and aims to provide a precedent for
future work.

Waiting Times, Cancer and COVID-19

An important measure of public health institutions are waiting times, i.e. length of time between
diagnosis, referral and start and end of treatment. Data on waiting times is useful to health au-
thorities and governments in terms of setting standards and targets, as well as keeping record
of the saturation of health services [19].

Waiting times are particularly relevant in cancer, a disease in which prognosis and probability
of survival is strongly dependent on an early diagnosis and subsequent treatment. Research
in England has shown that cancer waiting times delayed by two months can cause up to a
loss of 0.7 life-years for a referred patient [20]. The importance of reducing waiting times for
cancer patients led to the introduction of a 31-day waiting standard between referral and start
of treatment in the UK [8]. In this report, we aim to provide insight on the cancer waiting time
landscape in Scotland by analysing PHS data on the meeting of waiting times standards.

In 2020, public healthcare systems were strongly compromised by the COVID-19 pandemic,
a disease caused by the virus SARS-CoV-2 that has resulted in over 450 million infections and
6 million deaths worlwide [12]. In the UK, the pandemic has had profound effects on the Na-
tional Health Service, which had to accommodate unprecedented numbers of patients due to
COVID-19. This resulted in a decrease in patients treated for other conditions, as well as an
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increase on the waiting time for non urgent treatment [24]. Studies showed that, during COVID-
19, less patients with acute coronary syndrome were admitted to the hospital in England [6].
Similarly, COVID-19 caused a decrease in number of patients referred, diagnosed and treated
for colorectal cancer in England [7]. Conversely, in the context of cancer waiting times in Scot-
land, PHS reported that the standards were met in the same proportion of cases throughout
the pandemic (see Figure 1). However, no studies were performed addressing the absolute
number of patients referred for such standards.

Figure 1: NHS Scotland performance against the 31 and 62 day standards [16].

Research Questions

This report presents a statistical analysis of waiting times data provided by PHS. Our first goal
is to investigate how COVID-19 affected the number of patients who were being referred for
cancer treatment. Form here comes our first research question.

Research Question 1:
How has COVID-19 affected the number of eligible referrals of cancer patients under the
31 and 62 day standards in Scotland?

Moreover, we aim to use additional information stored in the data set (e.g. cancer type and
region of referral) to better understand the factors underlying variation in the number of referrals
for the cancer waiting times standards. Hence, we construct our second research question as
follows.

Research Question 2:
What factors contribute to the variation of referral numbers for cancer treatment under
the standards in Scotland?

Finally, we apply the same methodology developed to answer the previous questions to a dif-
ferent data set containing numbers of cancer diagnosis. This aims to answer the following
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question.

Research Question 3:
What is the impact of COVID-19 and other drivers on the number of cancer diagnoses
in comparison to the number of individuals being referred for treatment under the 31 and
62 day standard in Scotland?

For ease of exploration of this report, we note its structure:

• Part II explores the background of PHS, the data and methodologies to be employed,

• Part III presents the data analysis results and how these relate to our research questions,

• Part IV discusses the results obtained as well as directions for future work and practices.
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1 DATA

Part II

Background and Methodology

"Mathematics consists in proving
the most obvious thing in the least
obvious way."

George Polya

1 Data

PHS is the organisation associated with the Scottish government and NHS Scotland, who "have
access to and collaborate on an enormous range of data both on Scotland’s health and wellbe-
ing, and on health and social care services. This includes a wealth of data and intelligence vital
to helping people access quality services, like the cancer services data" [14]. Some of the data
sets which are of interest to the public and researches are placed onto an open data platform
whereby anybody can access them. Throughout this report we will only look at open source
data, which contain a small subset of the full data that is overseen by PHS. A summary of the
data sets which we have identified as being useful particularly for the purposes of Part III can
be found in Appendix B.

In Scotland, health care services are divided into 14 regions, which are referred to as Health
boards (HBs). Consequently, most of the data sets generated by PHS classify the data by
health boards in which the patients are referred and treated. Figure 2 shows how these health
boards are distributed on the Scottish map. These HBs can again be divided for cancer data into
three super-regions: WOSCAN, NCA, and SCAN. WOSCAN embraces the four NHS boards
in the West of Scotland: Ayrshire & Arran, Forth Valley, Greater Glasgow & Clyde and Lanark-
shire. SCAN is the South East Scotland Cancer Network bringing together the NHS boards:
Borders, Dumfries & Galloway, Fife, and Lothian. Finally NCA in the north of Scotland encom-
passes the boards: Grampian, Highland, Orkney, Shetland, Tayside, and Western Isles. HBs
differ between them in terms of demographic characteristics. When comparing data of different
HBs, it will become important to normalise by their population size, for which we use estimates
provided by PHS (See Appendix B).

1.1 Cancer Waiting Times: The 31 and 62 day Standards

From the range of waiting times data collected by PHS, which ranges from drug and alcohol
treatment to operations we focus on cancer waiting times in this report, for which two open
data sets are available. Each of these data sets contains the numbers of patients referred
and treated within the 31 and 62 days standards in Scotland, with the following additional
information

• Year and quarter of referral (from 2012 to 2021)

• Cancer Type (see Table 1)

• Health Board in which the patient was referred (see Figure 2)
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1.1 Cancer Waiting Times: The 31 and 62 day Standards 1 DATA

Figure 2: Scotland Health Board Areas as of 2022. Figure obtained from [9].

In Scotland, this data has been reported quarterly since 2012. These two aforementioned
standards are defined below.

Definition 1: 31 and 62 Day Standard

We state that the two standards, as defined by the Scottish Government [18], are

• 31-day target from decision to treat until first treatment, regardless of the route of
referral.

• 62-day target from urgent referral with suspicion of cancer, including referrals from
national cancer screening programmes, until first treatment.

In our first analysis of the data set, we realised that there was a mismatch between patients
eligible for treatment and treated patients in different regions. This led to us beginning to anal-
yse the data by eye in addition to sense checks. Following our observations, an update to the
data was issued by PHS to ensure it was aligned with that being used to create their reports.
From this we were then able to recreate some figures, similar to those by PHS, surrounding the
numbers of refereed and treated patients under the standards such as Figure 3. Even though
the ratio of referred and treated patients stays mostly the same over the years, as figure 1 also
suggests, you can see a drop in both the number of referrals and treated at the start of 2020.
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1.2 Cancer Diagnosis 1 DATA

Figure 3: A plot which shows the time evolution of patients eligible and treated within the 31
and 62 day standards from 2012 onwards.

1.2 Cancer Diagnosis

In order to compare and contrast our results, we decided to perform a parallel analysis using an
alternative data set. We analyse a data set containing weekly data on cancer diagnosis across
different HBs from 2019 to 2021. This is also open source data provided by PHS [17]. This
data is richer than the waiting times data in that it contains enhanced demographic information
of patients diagnosed. In particular, the data set includes counts of the number of cancer
diagnosis in Scotland, with the following additional information:

• Year, month and week of diagnosis (from 2019 to 2021)

• Cancer Type (see Table 1)

• Health Board in which the patient was diagnosed (see Figure 2)

• Sex of the patient (male or female)

• Age Group (0-49, 50-69, 70+)

As we can see in Table 1, the cancer diagnosis data considers more cancer types and a finer
classification than the referrals and treated data-set.

Moreover, Figure 4 shows the number of patients diagnosed with cancer is higher than the
number of patients referred for treatment for both the 31 and 62 day standard, even if we only
consider the cancer types that appear on both data sets. This is expected, because a set
eligibility criteria for the standards excludes some cancers for a plethora of reasons, such as
if the patient had a clinically complex pathway to their treatment [15]. Consequently, there is
a considerable fraction of cancer patients that do not meet the criteria to be eligible to meet
the waiting times standards, which compromises our ability to draw conclusions about cancer
waiting times form the 31 and 62 day standard data.
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1.2 Cancer Diagnosis 1 DATA

Referrals/Treated Cancer Types Total Diagnosis Cancer Types
All Malignant Neoplasms
Bladder
Bonde and connective tissue
Brain

Breast Breast
Cervical Cervical
Colorectal Colorectal
Head and neck Head and neck
Lymphoma Hodgkin Lymphoma

Non-Hodgkin lymphoma
Kidney
Leukaemias
Non-Melanoma Skin Cancer

Melanoma Malignant Melanoma of the skin
Mesothelioma
Multiple Myeloma and malignant plasma cell
Neoplasms

Upper Gl Liver and intrahepatic Bile Ducts
Oesophagus
Pancreas
Stomach

Ovary Ovary
Urological Penis

Prostate
Lung Trachea, Bronchus, and Lung

Testis
Thyroid
Uterus
Vagina
Vulva

Table 1: Comparison of cancer categories for referral and diagnosis data. Cancer types that
appear in both data sets are highlighted. See Appendix B for category sources.
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1.2 Cancer Diagnosis 1 DATA

Figure 4: Number of patients diagnosed with cancer (blue), referred for the 31 day standard
(orange) and treated within the 31 day standard (green) from 2019 to 2021. Data aggregated
for all HBs in Scotland and all cancer types that are both in the diagnosis and the referral data
set (see Table 1). See Appendix B for category sources.
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2 GENERALISED LINEAR MODELS

2 Generalised Linear Models

The three data sets analysed in this report (31 day referrals, 62 day referrals, diagnoses),
contain different variables, such as region and cancer type, that might affect the number of
patients referred/treated/diagnosed. The GLM provides a useful framework for comparing how
several explanatory, or independent variables, affect the outcome of dependent variables. In
GLMs, each outcome of the dependent variables is assumed to be generated from a particular
distribution of the exponential family. Some distributions belonging to the exponential family
are: normal, binomial, poisson and gamma [2].

2.1 Basic Form

Let us firstly explore a formal definition of a GLM before we start to proceed with how they can
be amended for other terms to be included.

Definition 2: Generalised Linear Model

A generalised linear model (GLM) consists of the following three components:

1. A (common) distribution from the exponential family for the independent response
variables Y1, ..., Yn .

2. A linear predictor
ηi = β0 +β1xi 1 + ...+βp xi p .

3. A differentiable, strictly monotone link function such that,

g (µi ) = ηi ,

where µi = E[Yi ]

As we started to explore the cancer referral and diagnosis datasets, we decided that it would be
sensible to assume that the distribution was Poisson as had been assumed in similar research
[1]. This was because of the following reasons:

• We are dealing with ‘rate’ data - that is to say we need to have a positive parameter for the
model, since we are dealing with numbers of individuals entering a waiting times system.

• The data is highly varied, especially when analysing specific cancer types separately, as
shown in section 4.3. Therefore having a model with a mean equal to its variance allows
for this large variation in the data [11].

Let us have a look at the form of a Poisson GLM for the number of referred cancer patients.
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2.2 Normalisation by Population Size 2 GENERALISED LINEAR MODELS

Definition 3: Poisson GLM

Let Yt be a random variable representing the number of referred patients for cancer
treatment in a certain quarter, t , with mean θt . Then if we assume

Yt ∼Poisson(θt ),

we have the following model,
log(θt ) = β0 +β1t .

Note that we can also include more β coefficients to model the effect of other covariates.

2.2 Normalisation by Population Size

We now consider the case in which the expected number of counts θ depends on a categorical
variable representing the region of referral:

θt ,r = β0 +β1 +β2,r ,

where the coefficient β2,r takes a different value for every possible region r . When applying
GLMs to population data from different categories or regions r , it is important to normalise
by population size in order to obtain comparable results for each region coefficient. To do
so, instead of considering number of occurrences, we consider rates of occurrences. In other
words, we divide the parameter θ by population size:

θt ,r

Et ,r
= β0 +β1 +β2,r ,

where Et ,r denotes the population size of each region r at a given time t . Thus, we obtain the
following model

log(
θt ,r

Et ,r
) = β0 +β1 +β2,r .

Using the properties of logarithms, the left-hand side can be rearranged as follows

log(
θt ,r

Et ,r
) = log (θt ,r )− log (Et ,r ) .

The term log (Et ,r ) is known as the ‘offset’ term. Combining the results above, we obtain the
following form of the GLM with a normalisation by population.

Definition 4: Poisson GLM Normalised by Population Size

Let Yt ,r be the number of cancer referrals, now also depending on ‘r ’, the categorical
variable region. Then given that we have Yt ,r ∼ Poisson(θt ,r ), we have that the GLM
normalised by population is given by,

log(θt ,r ) = log(Et ,r )+β0 +β1t +β2,r ,

where Et ,r represents the population of region r at time t .
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2.3 Time Alterations 2 GENERALISED LINEAR MODELS

2.3 Time Alterations

Another consideration that we will look to implement in the next part, will be that of considering
the functional form of a time dependence within the GLM. As shown in figure 3, a linear trend
might not suffice as the data seems to have a slight curve. Therefore we could start to include
some other form for the time variable. An example where we choose a second order polynomial
function, which incorporates t 2, is given below.

Example 2.1: t 2 Poisson GLM

Given a quadratic relationship in time for a Poisson GLM with Yt ∼Poisson(θt ) the number
of referred cancer patients, then we give the relationship as,

log(θt ) = β0 +β1t +β2t
2

.

2.4 Inclusion of Change Point Indicator

Consider next that we might end up trying to model a set of time series data which has a change
point, such as the time when the pandemic started. Whilst in section 3 we will explore how one
might start to identify a change point within the data, we need to consider how we could do
this using a GLM and what terms we would incorporate for this change. Let this coefficient be
γ0. As we want this coefficient to come into effect after a certain time ϵ, we multiply it by the
indicator function I (t − ϵ) defined as

I (t − ϵ) = {0 if t ≤ ϵ,
1 if t > ϵ.

To explore the effect of the pandemic on the period of time after the pandemic started, we
need to know the effect of the coefficient on the time trend and therefore the coefficient is also
multiplied by (t − ϵ). This gives the following model:

Definition 5: Change Point Impacted Poisson GLM

Given a change point in a time series Yt , where Yt ∼Poisson(θt ) is the number of cancer
referrals, then we give the following generalised linear model,

log(θt ) = β0 +β1t +γ0(t − ϵ)I (t − ϵ).

2.5 Inclusion of Recovery Period

Finally, we can include a more complex term for the impact of the pandemic. From figure 3, it
seems reasonable to assume that, following the impact of COVID-19, there was an immediate
recovery period afterwards. To model the initial drop in Yt , we use the term γ0I (t−ϵ), where the
indicator function guarantees that this occurs at the start of the pandemic at time ϵ. To model
the recovery, we need a coefficient γ1 taking affect after t = ϵ, which depends on the time trend.
This gives the expression,

γ1(t − ϵ)I (t − ϵ).
Hence we can defined the model as follows:
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2.6 Model Selection Criteria 2 GENERALISED LINEAR MODELS

Definition 6: Recovery Included Poisson GLM

Given a change point followed by an immediate recovery in a time series Yt , where
Yt ∼Poisson(θt ) is the number of cancer referrals, then we give the following generalised
linear model,

log(θt ) = β0 +β1t +γ0I (t − ϵ)+γ1(t − ϵ)I (t − ϵ).

2.6 Model Selection Criteria

Different models might perform differently in terms of being able to describe past behaviour
of data or being able to predict what may happen in the future. The way in which we have
identified as being an efficient way of choosing which model is performing best is that of the
Bayesian information criterion, as defined below.

Definition 7: BIC

Given a fitted model for some response data, then we may calculate,

BIC = −2×maximised log-likelihood+p × log(n),

where p are the number of independently fitted parameters in the model and n are the
number of observations we are fitting to [5].

BIC is not a metric to evaluate a model itself, but allows us to compare models against another.
In particular, the BIC provides a good balance between goodness of fit and model complexity.
In the absence of other reasons for choosing a model—for example subject matter information
about the relevance of some covariates—we can choose the model with the smallest BIC value.

When comparing GLMs with different combinations of explanatory variables, we can use BIC
to choose between them by employing iterative variable selection methods. We use a forward
stepwise selection procedure [3], which works as follows:

• Fit the model with just one covariate, for each covariate available.

• Add to the model the covariate that gives the best goodness of fit score, provided the
score is better than without the covariate or a level α of significance is attained.

• For all the remaining covariates, repeat the process.

• Variables selected at a step may be removed in a later step should the model be improved
without it by adding in an additional covariate.
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3 THE IMPACT OF COVID-19

Part III

Data Analysis

"Data are just summaries of
thousands of stories—tell a few of
those stories to help make the
data meaningful."

Dan Heath

In this section, we implement the GLMs presented in Part II, in addition to discussing other
techniques which can be used to answer our research questions. This will be done by utilising
the data sets described in Section 1.

3 The impact of COVID-19

Recall our first research question concerning the impact of COVID-19 on cancer waiting times.

Research Question 1:
How has COVID-19 affected the number of eligible referrals of cancer patients under the
31 and 62 day standards in Scotland?

All data sets considered are time series data, that is, sequences of observations taken at
successive points in time. Therefore, it is reasonable to analyse whether or not and when the
pandemic has impacted cancer waiting times by determining the existence and location of a
change point in the time series data.

Definition 8: Change Point in Time Series Data

Given a finite time series as an ordered sequence of observations (x1, x2, . . . , xT ),
consider a subset of the time series xa∶b = (xa , xa+1, . . . , xb) and denote its joint distribution
as p(xa∶b).

If for a chosen time τ,
p(x1∶τ) ≠ p(xτ+1∶T ),

then we say that a change point has occurred at the time τ.

In the context of Research Question 1, we are interested in associating the position of a change
point in the data under study with the COVID-19 pandemic.

3.1 Change Point Detection Algorithms

A common approach to identify change points in time-series data are change point detection
algorithms [23]. These find the time point(s) in which change point(s) occur. An advantage of
these methods is that they do not require a priori knowledge of the location of the change point.
Our goal was to use change point detection algorithms to identify the location of change points
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3.2 GLMs for Pandemic Impact 3 THE IMPACT OF COVID-19

and assess whether or not they matched with the beginning of the pandemic.

There exists a large library of algorithms that perform change point detection on time series
data [23]. In this project, we employed the package ruptures, which implements a variety of
change point detection methods in Python [22]. We choose four methods: pelt, binary seg-
mentation, window based search and dynamic programming. These are all offline methods,
meaning they receive and process the entire data set at the same time, considering changes
in the whole time series. All methods detect change points through minimising a cost function
over possible numbers and locations of change-points. However, the definition of the cost func-
tion and the computational approach to minimise the cost function differs between methods,
resulting in different outputs. Thus, it is common practice to employ several methods.

Figure 5 shows the results obtained using the previously mentioned algorithms to the 31 days
referrals data. First, we notice that there is indeed an observable drop in the number of treated
patients coinciding with the start of the pandemic (indicated by the red section). However, there
is discrepancy between the change points detected by different algorithms, with most not find-
ing a change point at the beginning of the pandemic. A potential reason for this is that change
point detection aims to place changes on points that better explain the overall time series,
rather than explaining punctual events such as a sudden drop. Moreover, the data is noisy, with
oscillations caused by several factors that dilute the strength of the signal of the drop in the first
quarter of 2020. Different methods finding different change points suggests that this is not the
best approach to identify the impact of COVID-19 on our time-series data.

3.2 GLMs for Pandemic Impact

Our initial analysis using change point detection algorithms was unable to provide clear insight
on the impact of the pandemic on cancer waiting times data. Consequently, we consider an
alternative strategy to identify change points relying on GLMs. We fit GLMs to our data with and
without including terms representing the pandemic. Comparison of the different models allows
us to determine if the effect of COVID-19 was significant. Instead of blindly looking for change
points as in change point detection, we choose ϵ to be the first quarter of 2020 (‘2020Q1’ in
the data). This change point location was based on the fact that the first COVID-19 cases in
Scotland were recorded in this quarter. Further exploration of different values for ϵ, as can be
found in section 3.3, also indicate ‘2020Q1’ to be the best choice.

In order to compare different GLMs, we use forward stepwise model selection as explained
in section 2.6. The first step is to fit a basic GLM and then to add different more complex terms.
From the different possibilities of terms to include in the model, each explained in 2.2, we chose
to always include the normalisation by population size. Then there were three main models of
interest: the basic GLM, the inclusion of the pandemic, and the inclusion of the recovery period.
Trying all three versions with a linear time trend and a quadratic time trend, creates the large
variation of models given below.
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3.2 GLMs for Pandemic Impact 3 THE IMPACT OF COVID-19

Figure 5: Results obtained by implementing different change point detection algorithms to the
31-day data. These are implemented in Python using the package ruptures [22].
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3.2 GLMs for Pandemic Impact 3 THE IMPACT OF COVID-19

model 3.2.1: log (θt ) = log(Et )+β0 +β1t ,

model 3.2.2: log (θt ) = log(Et )+β0 +β1t +β2t
2

,

model 3.2.3: log (θt ) = log(Et )+β0 +β1t +γ0(t − ϵ)I (t − ϵ),
model 3.2.4: log (θt ) = log(Et )+β0 +β1t +β2t

2
+γ0(t − ϵ)I (t − ϵ),

model 3.2.5: log (θt ) = log(Et )+β0 +β1t +γ0I (t − ϵ)+γ1(t − ϵ)I (t − ϵ),
model 3.2.6: log (θt ) = log(Et )+β0 +β1t +β2t

2
+γ0I (t − ϵ)+γ0(t − ϵ)I (t − ϵ).

These six models were fitted on both the 31 day referral data and the 62 day referral data ag-
gregated for all cancer types and regions. The coefficients with confidence intervals and BIC
for all six models and two datasets can be found in appendix A. The actual data plotted in
comparison to the fitted models with significant coefficients for the 31 day standard are given
by figure 6. For all models except for model 3.2.4, all coefficients were significant. Model 3.2.4
has an insignificant coefficient β2, which is why this model has been discarded. Next to that,
the BIC decreases if the complexity of the model increasing, making model 6 the model best
fitting the data.

Figure 6: Number of referrals eligible for 31 day standard and corresponding fitted models,
where model 3.2.1 as defined in 2.2, model 3.2.2 as defined in 2.3, model 3.2.3 in 2.4, and
model 3.2.4 in 2.5.

As shown in the figure, the first model, given by the blue line, indeed seems to fit the mean of
the rate of referrals for the 31 day standard. There seems to be a slightly upward trend, sug-
gesting the number of referrals increase over time. Second, we added a nonlinear time-term
for model 2, given by the red line. There is a slight curve in this model, but it looks mostly
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similar to the linear model in time. The result of model 3 is given by the orange line in figure 6.
The significant coefficient γ0 = −0.008914, suggests that the pandemic had a decreasing effect
on the time trend on the rate of referrals for 31 day standard. The figure shows this decrease
clearly. However, γ0 is quite small, which could be because it bundles both the pandemic and
recovery time together. This would mean it is not able to model the drop as clearly as model
3.2.5 or 3.2.6.

Models 3.2.5 and 3.2.6 give drastically different fitted lines because of the clear drop at time ϵ.
This drop models the data more accurately, which can also be seen in the BIC as this has more
than halved (a much bigger decrease than between other models). On the other hand, it can
be questioned if this model would be useful for predictions. A discussion around this point can
be found in Part IV.

The actual data plotted in comparison to the fitted models with significant coefficients for the
62 day standard are given by figure 7. Model 3.2.1 and 3.2.2 both have significant coefficients,
with model 3.2.2 having a smaller BIC. This is similar to the models for the 31 day referral data.
Model 3.2.3 is again insignificant, suggesting that the relationship with time is not quadratic.
Surprisingly, model 3.2.4 has coefficient γ0 that is insignificant, suggesting that the pandemic
did not have a significant influence on the 62 day referral data. Continuing to model 3.2.5
and 3.2.6, the coefficients equivalent to the impact of the pandemic are significant. Thus it is
necessary to split the recovery period from the drop in rate of referrals for the model to find a
significant change due to the pandemic.

Figure 7: Number of referrals eligible for 62 day standard and corresponding fitted models,
where model 1 as defined in 2.2, model 2 as defined in 2.3, model 3 in 2.4, and model 4 in 2.5.

All coefficients that model the effect of COVID-19 are shown in table 2. This shows that there
is a significant drop of rate of referrals at the point of the pandemic, and a significant positive
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influence on the time trend after the pandemic once recovery has set in.

coefficient 31 day referrals 62 day referrals
model 3.2.3 γ0 −0.008914 −0.001360
model 3.2.5 γ0 −0.2965 −0.2667

γ1 0.04967 0.05060
model 3.2.6 γ0 −0.3275 −0.3154

γ1 0.04165 0.03766
Table 2: Pandemic coefficients of fitted models for 31 day and 62 day referrals, where the
highlighted coefficient has insignificant p-value 0.551, while all other coefficients are significant
with p-values smaller than 2e−12. γ0 gives the effect of the pandemic on the time trend in model
3.2.3 and the size of the drop in model 3.2.4 and 3.2.5, while γ1 represents the effect of the
recovery on the time trend.

3.3 Optimisation of ϵ

Even though the first recorded cases of COVID-19 were in the first quarter of 2020, it could be
that the change point in the number of cancer referrals happened months later. In the above
section we decided via intuition to set ϵ to 2020 Quarter 1. In order to determine this was a
sensible choice, we explored how different values for ϵ change the results and determine which
hypothetical change point location better explains the data. Picking from above both model
3.2.3 and model 3.2.5 — that is the models where we have only linear time periods and an in-
clusion of a pandemic term — we then ran the model with a variety of choices of ϵ ranging from
the last two quarters of 2019 through till the end of 2020. Firstly the result of this simulation for
model 3.2.3 can be seen in figure 8.

Figure 8: Values of the pandemic inclusion term coefficient for a range of selected epsilon for
model 3.2.3.

Figure 8 would suggest that we have made a sensible choice in picking the first quarter of 2020
in both models. Whilst the figure shows one should pick earlier an earlier quarter, we know it
would not make sense to choose a date in 2019 to represent the pandemic. A potential reason
as to why we might be seeing a lower coefficient value in a pre-pandemic time within model
3.2.3 is due to our pandemic term being an additional coefficient to the time-trend coefficient
which already exists in the model. Should one choose to normalise by the time-trend coeffi-
cient, potentially a more firm indication of 2020Q1 being the change point could be obtained for
model 3.2.3.

18



3.3 Optimisation of ϵ 3 THE IMPACT OF COVID-19

Furthermore we see that the value of the BIC is increased slightly as the coefficient value
also increases in the 31 day standard case, however for the 62 day standard the BIC stays
relatively the same regardless of the choice of ϵ. This reaffirms that model 3.2.3 is not optimal
when trying to model the impact of the pandemic.

Next the results of the simulation for model 3.2.5 can be found in figure 9 below.

Figure 9: Values of the pandemic inclusion term coefficient for a range of selected epsilon for
model 3.2.5.

Figure 9 indicates that the choice of ϵ to be at the first quarter of 2020 is optimal. This is shown
by the most negative value being given by the coefficient and is reinforced by the smallest BIC
score for both the 31 and 62 day standards.

For both model 3.2.3 and 3.2.5 we see that regardless of the choice of epsilon, the pandemic
inclusion term is always a statistically significant coefficient.
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4 Driving Factors

In the previous section, we showed that there has been a reduction in the number of referrals
for the 31 and 62 day standard coinciding with COVID-19. However, prior to COVID-19, there
was additional variation in the number of referrals, including a meeting of the 31-day standard
but not the 62-day standard. This suggests the existence of alternative drivers for variation on
the amount of patients being referred and treated within the waiting times standards. Assessing
this is the goal of our second research question.

Research Question 2:
What factors contribute to the variation of cancer patients referred for waiting times stan-
dards in Scotland?

4.1 Region and Cancer Type As Covariates

Constrained to the demographic data provided with the eligible referral data for 31 or 62 day
standards, we can create a GLM that includes categorical variables for region and cancer type
(14 regions and 10 cancer types as explained in section 1). This GLM is defined as follows:

Let Yt ,c,r be the number of patients referred for cancer treatment with,

• t: quarter of referral,

• c: cancer type,

• r: health board region of referral.

Assuming that Yt ,c,r ∼Poisson(θt ,c,r ) then we can model the key drivers for the number of refer-
rals as,

model 4.1.1: log(θt ,c,r ) = log(Et ,r )+β0 +β1t +β3,c +β4,r ,

where the population size, Et ,r is now dependent on both time and region and β3,c and β4,r are
categorical variables. Again, we also fit a model that includes the impact of COVID-19:

model 4.1.3: log(θt ,c,r ) = log(Et ,r )+β0 +β1t +β3,c +β4,r +γ0(t − ϵ)I (t − ϵ).

We tried the same variations of terms as in the previous section, giving equivalent models for
3.2.1-3.2.6 with additional coefficients β3,c and β4,r . The coefficients β1, β2 and γ0 of these
models were insignificant for their equivalent models in section 4.3. Similarly to this section,
the BIC decreased as the model became more complex, as shown in appendix A. However, any
fitted model had almost the exact same coefficients β3,c and β4,r and corresponding confidence
intervals. Therefore, we only plot the coefficients for the most complex model with the lowest
BIC,

model 4.1.6: log(θt ,c,r ) = log(Et ,r )+β0 +β1t +β2t
2
+β3,c +β4,r +γ0I (t − ϵ)+γ1(t − ϵ)I (t − ϵ).

These coefficients are shown in Figures 10 and 11 for the 31 day referral and 62 day referrals
data, respectively. Overall, the four cancer types that have the most impact on the number of
referrals are: urological, breast, lung and colorectal cancer. Meanwhile ovarian and cervical
cancer have the least impact on our model. The coefficients for the regions are overall closer
to 0, suggesting that cancer type has a bigger influence on the number of referrals than region.
We also see a difference between the distribution of coefficients between the 31 and 62 day
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standard. Even though both show Western Isles to have a high impact and Lanarkshire to have
a low impact on the number of referrals, the coefficients for the number of referrals eligible for
the 31 day standard additionally show a higher impact for Greater Glasgow & Clyde, Dumfries
& Galloway, and Tayside, and a lower impact for Orkney.

Figure 10: Coefficients β3,c and β4,r and their respective confidence intervals for cancer types
and regions for 31 day referrals as resulted from model 4.1.6.

Figure 11: Coefficients β3,c and β4,r and their respective confidence intervals for cancer types
and regions for 62 day referrals as resulted from model 4.1.6.

4.2 Interactions of Important Factors and the Pandemic

The previous section suggests that some regions and cancer types have a higher or lower
impact on the number of referrals than others. Therefore, we might expect the impact of COVID-
19 to also vary for certain regions or cancer types. In this section, we will look at the interactions
between the regions and pandemic impact as well as interactions between the cancer types
and pandemic impact. This could tell us how COVID-19 has differently affected the number of
referred cancer patients for different regions and cancer types. To do this, we use the GLM,

model 4.2.3: log(θt ,c,r ) = log(Et ,r )+β0 +β1t +β3,c +β4,r +γ0(t − ϵ)I (t − ϵ)
+γ2,c (t − ϵ)I (t − ϵ)+γ3,r (t − ϵ)I (t − ϵ),

where γ2,c is the categorical interaction term between γ0 and different cancer types and γ3,r is
the categorical interaction term between γ0 and different regions. The GLM with nonlinear time
trend coefficient, β2, was discarded because of insignificant coefficients. The extra pandemic
recovery term γ1 could be added, but it would cause many more interaction terms and therefore
this simpler model was fitted.
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Figures 12 and 13 show the interaction coefficients for the regions and cancer types. The
significant pandemic coefficients γ0 are −0.0435313 for the 31 day referrals, and −0.0376035 for
the 62 day referrals. Both coefficients have p-values smaller than 9e −7. The first notable thing
about the coefficients is their large confidence intervals. This could be because the COVID-
19 coefficient γ0 only takes affect from ’2020Q1’ to ’2021Q3’, so there is fewer data points on
which these coefficients are based, in comparison to coefficients β3,c and β4,r . Note that the
cancer types with the lowest coefficients in the previous section 4.1, ovarian and cervical can-
cer, are the cancer types with the largest confidence intervals. This again suggests that a lack
of data could be the cause for the large confidence intervals. The large confidence intervals in
turn contribute to the fact that there are no clear outliers the same for both the 31 and 62 day
referrals.

For 31 day standard, figure 12 does suggest that the number of referred patients with upper
gastrointestinal cancer has been less affected by the pandemic than the number of referred pa-
tients with ovarian or lymphoma cancer. It also suggests that the number of referrals of Orkney
and the Western Isles have been less impacted by the pandemic than Borders.

For the 62 day referrals, figure 13 suggests that the number referrals for head & neck, uro-
logical, and upper gastrointestinal cancer have been less impacted by covid-19 than lung and
ovarian cancer. The region coefficients are so close together with relatively large confidence
intervals that it is hard to speak of any clear differences between regions.

Figure 12: Interaction coefficients γ2,c and γ3,r for different cancer types and regions, respec-
tively, for the 31 day standard resulting from fitting model 4.2.3.

Figure 13: Interaction coefficients γ2,c and γ3,r for different cancer types and regions, respec-
tively, for the 62 day standard resulting from fitting model 4.2.3.
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4.3 A GLM for Specific Regions and Cancer Types

To explore in further detail the differences between cancer types and regions, we fit a model on
data for one specific region and one specific cancer type. As this would result in many different
models, we picked the most common cancer types, breast and lung cancer, to analyse. To
encompass all referrals, we chose the three super-regions WOSCAN, NCA, and SCAN, to
model separately. Fitting the same six models as in section 3.2 gives figures 14 for the 31 day
referrals and figure 15 for the 62 day referrals. Models with insignificant coefficients β1, β2, γ0

or γ1 are discarded. All significant coefficients can be found in table 3.

Figure 14: For the 31 day standard, rate of eligible referrals and their fitted models with sig-
nificant coefficients for different regions (NCA, SCAN, WOSCAN) and different cancer types
(breast, lung).

Firstly, it is notable that different models give a better fit with significant coefficients for different
regions and different cancer types, suggesting again that region and cancer type are important
factors impacting the number of referrals. Next to that, none of the fitted models have signifi-
cant coefficients for the number of referrals with lung cancer in NCA, suggesting that a general
model for all cancer types and all regions is not able to describe the data for specific regions
and cancer types. This also makes it hard to compare different regions and cancer types as
coefficients are not directly comparable.
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Figure 15: For the 62 day standard, rate of eligible referrals and their fitted models with sig-
nificant coefficients for different regions (NCA, SCAN, WOSCAN) and different cancer types
(breast, lung).

When observing the rate of referrals with breast cancer in any region, fitting model 4.3.5 gives
significant coefficients, while this model never results in significant coefficients for lung cancer
referrals. Looking at the data in figures 14 and 15, we see that this seems to align with the
fact that the rate of referrals for breast cancer is better modelled with a drop, while the rate of
referrals for lung cancer does not follow a steep drop when the pandemic started.

Comparing the coefficients γ0 for breast cancer in different regions in table 3, shows that for
both the 31 and 62 day standard, the impact of COVID-19 on breast cancer referrals is the
highest in WOSCAN and lowest in SCAN. Similarly, the recovery coefficient γ1 for breast can-
cer is highest in WOSCAN and lowest in SCAN. This suggests that even though WOSCAN was
most impacted by the pandemic, the rate of referrals also increased the most on the time trend
in the recovery period. Another interesting observation is the fact that for the both standards
in regions SCAN and WOSCAN, the coefficient β1 is negative for lung cancer, while positive
for breast cancer. This suggests that the rate of referrals in these regions decreases for lung
cancer while increases for breast cancer. This is unexpected, because incidence rate of all
cancer types usually increase over time.
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standard region cancer type model β1 β2 γ0 γ1 BIC
31 day NCA breast 4.3.1 −0.00121 558

4.3.2 0.01322 0.00038 520
4.3.5 0.00266 −0.36303 0.04280 468

lung 4.3.1 0.00453 413
4.3.3 0.00565 −0.01480 411

SCAN breast 4.3.5 0.00184 −0.33987 0.07152 479
lung 4.3.4 −0.00883 0.00030 −0.01966 533

WOSCAN breast 4.3.1 0.00157 878
4.3.2 0.00728 −0.00015 869
4.3.4 0.00978 −0.00024 0.01181 868
4.3.5 0.00459 −0.54304 0.10196 579

lung 4.3.6 −0.00652 0.00022 −0.2733 0.04659 512
62 day NCA breast 4.3.2 0.01678 −0.00046 386

4.3.5 0.00354 −0.42997 0.05746 368
lung - -

SCAN breast 4.3.1 0.00338 384
4.3.5 0.00406 −0.37473 0.08942 355

lung 4.3.1 −0.00545 358
4.3.4 −0.02268 0.00057 −0.05818 351

WOSCAN breast 4.3.1 0.00488 564
4.3.2 0.01205 −0.00019 561
4.3.5 0.00866 −0.61317 0.11074 418

lung 4.3.2 −0.00845 0.00019 391
4.3.6 −0.01222 0.00035 −0.22507 0.03301 385

Table 3: Model coefficients for fitted models per region and cancer type. Only models with
all coefficients having p-values < 0.05 are included, where coefficients in dark gray boxes have
p-value < 0.05, in light gray boxes have p-value < 0.01, and all other coefficients have p-value
< 0.001.
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5 Diagnosis Data

In this section, we analyse the diagnosis data set to study the effect of the pandemic and
demographic factors on cancer diagnosis, as a proxy to better understand how the previous
shape the waiting times landscape.

Research Question 3:
What is the impact of COVID-19 and other factors on the number of cancer diagnoses in
Scotland? How does it compare to the number of individuals being referred for treatment
under the 31 and 62 day standard in Scotland?

5.1 The Impact of COVID-19

We now follow the same methods as in section 3 to analyse the impact of the pandemic on
cancer diagnosis using different GLMs by comparing models. We start from the simplest model
that normalises the number of diagnosis by the population size of the region and considers a
linear trend in time (model 5.1.1), and then additional linear trends representing the pandemic
(model 5.1.2) and the recovery period (model 5.1.3). The cancer diagnosis data is reported
weekly instead of quarterly, so we choose the beginning of the pandemic ϵ to be the third week
of March 2020. We do not consider quadratic terms since the analysis in section 3 showed that
they were not always statistically significant.

model 5.1.1: log (ξt ) = log(Et )+β0 +β1t ,

model 5.1.2: log (ξt ) = log(Et )+β0 +β1t +γ0(t − ϵ)I (t − ϵ),
model 5.1.3: log (ξt ) = log(Et )+β0 +β1t +γ0I (t − ϵ)+γ1(t − ϵ)I (t − ϵ).

We fit these models to the cancer diagnosis data, aggregating over all the other covariates (re-
gion, cancer type, age and sex). Table 4 shows the values of the coefficients, their confidence
interval, and the BIC score of each model. In all cases, all coefficients were found statistically
significant with p-values smaller than 2e − 12. The linear time trend is weak in all models (or-
der of 10−3), and negative for models 5.1.1 and 5.1.3, and positive for 5.1.2. In all cases, the
pandemic coefficient is negative and of order 10−1. Finally, in model 5.1.3, the recovery term is
positive, but 3 orders of magnitude smaller than the pandemic term. We notice that the latter
model, which includes both the pandemic and the recovery term, has lowest BIC, meaning it
is the model that best describes the data. This result suggests that there was a significant de-
crease in the number of cancer diagnosis starting with the beginning of the pandemic followed
by a weaker but positive recovery.

Comparing this to Table 2, we see that the pandemic has had a similar affect in the rates
of cancer diagnosis and referrals for the 31 and 62-day standards. In all cases, the time series
data is better explained by models that include both the pandemic and the recovery terms, with
the coefficient of the first taking values around −0.3. Thus, our analysis of cancer diagnosis
data supports the results obtained in the previous study using 31 and 62-day referral data,
even though this has lower time resolution.
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coefficient value confidence interval (2.5%, 97.5%) BIC
model 5.1.1 β1 −0.00119 (−0.00131,−0.00108) 89793.8
model 5.1.2 β1 0.00239 (0.00216, 0.00262) 89679.9

γ0 −0.3097 (−0.3268,−0.2927)
model 5.1.3 β1 −0.00237 (−0.002681,−0.00207) 89450.8

γ0 −0.3618 (−0.3798,−0.3438)
γ1 0.01126 (0.01076, 0.01169)

Table 4: Coefficients, confidence intervals and BIC scores of models 5.1.1-5.1.3 fitted to cancer
diagnosis data. All coefficients were significant with p-values smaller than 2e −12.

5.2 Important factors

In order to study the contribution of different factors to the variation in cancer diagnosis data, we
follow the same methods as in Section 4 and fit the data to GLMs with different combinations of
explanatory variables. Given the additional demographic data provided in the cancer diagnosis
data, we create a GLM that includes categorical variables for region and cancer type, as well
as sex and age group.

Let X t ,c,r,s,a be the number of cancer diagnosis,

• t: week of diagnosis,

• c: cancer type,

• r: health board region of referral,

• s: sex,

• a: age group 1.

Assuming that X t ,c,r,s,a ∼Poisson(ξt ,c,r,s,a) we can model the important factors for the number of
diagnosis as

model 5.2.1: log(ξt ,c,r,s,a) = log(Et ,r )+β0 +β1t +β3,c +β4,r +β5,s +β6,a .

Following our results in the previous section, we include two terms to model the impact of
COVID-19:

model 5.2.2: log(ξt ,c,r,s,a) = log(Et ,r )+β0+β1t+β3,c+β4,r+β5,s+β6,a+γ0(t−ϵ)I (t−ϵ)+γ1(t−ϵ)I (t−ϵ).

We consider different GLMs, starting from model 5.1.1 as the simplest model and up to model
5.2.2 as the most complicated model. Table 5 shows the BIC score for different models. Re-
markably, we notice that adding a categorical variable for cancer causes the BIC to be reduced
by half. Addition of all other variables also results in lower BIC, i.e. in models that fit the data
better, except for the addition of sex. Thus, the GLM that better fits the data is:

model 5.2.3: log(ξt ,c,r,s,a) = log(Et ,r )+β0+β1t+β3,c+β4,r +β6,a+γ0(t−ϵ)I (t−ϵ)+γ1(t−ϵ)I (t−ϵ).
1Population studies usually treat age as a numerical variable. We treat is as categorical because the cancer

diagnosis data set only specifies the age as belonging to one of 0-49, 50-69 or 70+.
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β3,c β4,r β5,s β6,a γ0 γ1 BIC
model 5.1.1 89793.8

43351.5
41258.5
41348.1
39782.5
39562.7
38127

model 5.2.3 36254.8
model 5.2.2 36968.3

Table 5: BIC scores of GLMs fitted to cancer diagnosis data. A blue shade indicates that the GLM
contains the corresponding variable. All GLMs contain the population size offset, the intercept β0 and
the linear time trend β1t .

Figures 16 and 17 display the values of the coefficients for different regions, cancer types
and age of model 5.2.3. On the one hand, all coefficients for cancer type are significant with
p-values smaller than 2e − 12, showing the importance of the type of cancer in the rates of
diagnosis. As expected, the cancer types with highest diagnosis rates are breast, colorectal,
lung and prostate cancer. On the other hand, some coefficients for regions are not statistically
significant, possibly because some HBs have small population sizes. We do notice that the
HB corresponding to Greater Glasgow & Clyde has the largest rate of cancer diagnosis, whilst
Lothian has one of the lowest. Finally, our analysis aggregating over all cancer types suggests
that age is a strong driver for cancer diagnosis, with significant and large differences between
age groups. As expected, the rate of cancer diagnosis is significantly larger for people over 50,
and largest for people over 70. However, sex is not a significant significant factor, as we can
conclude from both the fact that the coefficients are not significant and that the model including
sex as a categorical variable has one the larger BIC scores.

Figure 16: Coefficients for cancer types β3,c (left) and regions β4,r (right) of model 5.2.3 fitted to the
cancer diagnosis data.
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Figure 17: Coefficients for age β6,a (left) of model 5.2.3 and coefficients for sex β5,s of model 5.2.2 both
fitted to the cancer diagnosis data.

Comparing these results to the equivalent figures for the 31 and 62-day referrals data (Figures
10 and 11), we notice remarkable similarities between the cancer types and regions that have
higher rates. Moreover, this analysis shows the strength of age as a determinant for cancer
diagnosis, which the 31 and 62 day data did not include due to data limitations.

5.3 Drivers for Breast and Lung Cancer

The results of the previous section highlight the significance of differences in rates of diagnosis
between cancer types. We end this section by considering breast and lung cancer separately,
analogous to our analysis of the 31 and 62 days standard. Table 6 shows the values and con-
fidence intervals of the linear time and pandemic terms. These do not differ much from the
values obtained fitting the model to data aggregated by cancer type, but we do notice that the
value of γ0 are more negative, especially for breast cancer. This suggests that the pandemic
had a larger impact on breast cancer rates than lung cancer, which were reduced at the start
of the pandemic more than the average for all cancer types.

coefficient value confidence interval
Breast Cancer β1 −0.0021 (−0.00371,−0.00127)

γ0 −0.4715 (−0.5463,−0.3968)
γ1 0.01345 (−0.01152,−0.01536)

Lung Cancer β1 −0.001619 (−0.003347,−0.001067)
γ0 −0.3631 (−0.4668,−0.2597)
γ1 0.01836 (−0.02034,−0.01739)

Table 6: Time and pandemic coefficients and confidence intervals of model 5.2.3 fitted to breast
and lung cancer diagnosis data. All coefficients were significant with with p-values smaller than
2e −12.

Finally, figures 18 and 19 show the values and confidence intervals of the coefficients for region
and age for breast and lung cancer, respectively.
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Figure 18: Coefficients for regions β4,r (left) and age β6,a (right) of model 5.2.3 fitted to the
breast cancer diagnosis data.

Figure 19: Coefficients for regions β4,r (left) and age β6,a (right) of model 5.2.3 fitted to the lung
cancer diagnosis data.

We notice some remarkable differences between the coefficients for regions, which may be
a consequence of the two types of cancer being influenced by different environmental and
demographic factors. Breast cancer rates are highest for people between 50 and 70, whilst
lung cancer has largest rates in the 70+ age group. This results is consistent with the literature
[13]. Overall, this analysis, together with the results of Section 4.3 show the importance of
treating different cancer types separately.
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Part IV

Conclusions

"The essence of mathematics lies
in its freedom."

Georg Cantor

Discussion of Results

Overall, we were able to show that there was a significant change point in the number of cancer
referrals and diagnoses at the start of the pandemic (first quarter of 2020). Change point detec-
tion algorithms were insufficient to show this change point, but GLMs showed it for the number
of cancer referrals for both the 31 and 62 day standard and for the number of cancer diagnoses.
How this change point is best modelled is, however, to be discussed. For all datasets, the GLM
that had the best fit to the data and lowest BIC is the most complex model with a new offset
term at the start of the pandemic and a recovery term on the time trend. Thus after the pan-
demic, the number of cancer referrals and diagnoses declined within the next quarter and then
increased on a steeper trend than before. Future work should consider the predictive power
of the models suggested, although this might be compromised in the case of GLMs tailored to
fit the influence of COVID-19. Once more data is available, it would therefore be interesting to
evaluate the same models on their predictive power to see which model performs best in this
regard.

PHS reports the percentage of treated cancer patients within the 31 or 62 day standard as
a proxy for cancer waiting times. This seemed unaffected by COVID-19, as explained in the
introduction. However, our analysis shows that there was a drop in numbers of referred can-
cer patients, it might be that the standards were met only because there were less patients to
treat. However, our report cannot make any conclusions about the cancer waiting times. This
is something to explore once more detailed data is available.

The rate of cancer referrals and diagnoses are determined by cancer type and region. Cancer
type is the strongest determinant. This is in line with expectations, because cancer is very
heterogenic as a disease, and different cancer types have different different features. This is
reiterated by the fact that models for specific regions and cancer types give varying significant
coefficients. This suggests that cancer type, and region, are important factors that significantly
change the best fitted model, and that you lose important variations if you model aggregated
data. Overall, the four cancer types that have the most impact on the number of referrals are:
urological, breast, lung and colorectal cancer. Meanwhile ovarian and cervical cancer have the
least impact on the number of referrals and diagnoses. Note that these differences include that
some cancer types are more common than others.

Different regions also have a varying impact on the number of referrals and diagnoses, even if
these variations are less strong in comparison with different cancer types. The Western Isles
and Orkney HBs have a higher and lower impact on the number of referrals and diagnoses,
which could be explained by the fact that they are relatively isolated from the rest of Scotland.
It is, however, surprising that Lanarkshire, surrounded by regions with a higher impact such
as Dumfries & Galloway and Greater Glasgow & Clyde, has a lower impact on the number of
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referrals and diagnoses. In the future, we suggest to take a more detailed look at a GLM for
Lanarkshire specifically to explain this unexpected result.

In an exploration to find how different cancer types impacted the drop in the number of re-
ferrals during the pandemic, we noticed large confidence intervals that were most likely caused
by a lack of data. There are only six time points after the start of COVID-19, and especially for
less common cancer types, this made it difficult to make many conclusions. We did see that
the number of referred patients with upper gastrointestinal cancer has been less affected by
the pandemic, while number of referred patients with ovarian cancer have been more impacted
by the pandemic.

For more detail on other cancer types and the differences between regions, we recommend
to wait until more data is available for analysis. Taking a more detailed look at the number of
referrals and diagnoses of breast and lung cancer specifically, showed that breast cancer is
best modelled with a drop at the start of the pandemic, while lung cancer is not. This suggests
that breast cancer was more impacted by COVID-19 than lung cancer. This reiterates the im-
portance of looking at different cancer types separately, especially if more data is available as
for more common cancer types as breast and lung caner.

An important difference between the referral and diagnosis data is that the diagnosis data
also includes information on age and sex. As expected, the results show that age is a strong
determinant, even stronger than region. Sex, however, is not a strong determinant with respect
to the aggregated cancer types. Future research should consider the role of sex in specific
cancer types.

Improvements to Public Health Measures and Data Collection

Across regions there is a varying impact on the number of referrals, even though it has been
normalised by the population. It could be that the data is being recorded inconsistently across
different regions. To make a stronger conclusion, it is necessary that NHS Scotland and PHS
continue to use the 31 and 62 day standards to collect and present waiting times with a stan-
dardised application of the criteria. This has the potential to improve the quality of the data
set, allowing statistical analysis to draw more reliable conclusions. Additionally, this would help
in terms of modelling demand for the future in regions, which in turn could see the process of
referrals to treat in a different region from that originally giving the referral becoming much more
streamlined and consistent.

Furthermore, the 31 and 62 day standard data set is very limited in terms of the demographic
characteristics of patients that might play important roles. In the case of cancer diagnosis
data, our results highlight the importance of age as a determinant. It would be interesting to
include demographic features into the analysis of the 31 and 62 day standard, for which data
is recorded in hospitals but not not included in the open data platform for the 31 and 62 day
standards. Enriching the open data platform with additional information would benefit future
research. This could be done whilst maintaining anonymity of patients, for example following
the format of the cancer diagnosis data.
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Future Modelling

In terms of modelling strategies, there is a multitude of directions in which future research could
be developed. Firstly, in terms of identifying a change point in the data sets corresponding with
the pandemic, one could use high dimensional change point detection [21]. This would
involve connecting a large number of interconnected data sets and running similar algorithms
to those described in Section 3. Examining other waiting times data could be particularly use-
ful for monitoring any changes which occur due to societal influence, for example a screening
program for cancer.

Secondly, a similar analysis could be performed using generalised additive model (GAM)
in place of GLMs. An advantage of GAM is that they do not incorporate time explicitly. Instead,
they assume the linear response terms depend linearly on unknown smooth functions of some
predictor variables, and then recover the time dependence within the system. Implementing
GAMs would allow flexibility in creating a non-parametric relationship between the number of
referrals and the time period but potentially could see a huge loss in terms of being able to
narrow down what is happening in one select time period of historical data.

In this report, we have only focused on three data sets available by Public Health Scotland.
However, the cancer waiting landscape might be better explained by additional data. For exam-
ple, the total number of hospital beds might influence the capacity of the hospital and therefore
its ability to treat cancer patients within the 31 or 62 day standard. Next to that, there are anal-
ogous types of data collected by other countries leading health bodies. It would be interesting
to not only use the same methods in this report to analyse these data sets, but also to combine
data sets to get a better picture of the interlinking data available. A model including more data
sets could also include more important factors and therefore make more accurate predictions,
allowing PHS to predict future demand and inform policy-making within NHS Scotland.
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A GLM COEFFICIENTS

Appendices

A GLM Coefficients

This appendix includes all GLM coefficients for different models throughout the report. Note
that β(∗) means the coefficient β was not significant.

31 day referrals coefficient value confidence interval (2.5%, 97.5%) p-value BIC
model 3.2.1 β1 0.001562 (0.001303431, 0.001819711) < 2e −16 1879.27
model 3.2.2 β1 0.004066 (3.049491e −03, 5.083217e −03) 4.61e −15 1857.98

β2 −0.000066 (−9.123126e −05,−3.979361e −05) 5.98e −07
model 3.2.3 β1 0.002228 (0.001910225, 0.002544998) < 2e −16 1832.86

γ0 −0.008914 (−0.011391639,−0.006440445) 1.69e −12
model 3.2.4 β1 0.002140 (8.760938e −04, 3.404805e −03) 0.000909 1836.51

β
(∗)
2 0.000003 (−3.437254e −05, 3.965217e −05) 0.888428

γ0 −0.009097 (−1.265463e −02,−5.540104e −03) 5.38e −07
model 3.2.5 β1 0.003766 (0.003434953, 0.004096536) < 2e −16 835.694

γ0 −0.296546 (−0.315308665,−0.277830376) < 2e −16
γ1 0.049672 (0.045260123, 0.054085285) < 2e −16

model 3.2.6 β1 −0.002924 (−0.0042165115,−0.0016301388) 9.36e −06 729.878
β2 0.000207 (0.0001682056, 0.0002455893) < 2e −16
γ0 −0.3275 (−0.3471114707,−0.3079262938) < 2e −16
γ1 0.04165 (0.0369885230, 0.0463079240) < 2e −16

Table 7: Coefficients of different models for 31 day referrals for section 3.2.

62 day referrals coefficient value confidence interval (2.5%, 97.5%) p-value BIC
model 3.2.1 β1 0.006062 (0.005577691, 0.006545496) < 2e −16 840.120
model 3.2.2 β1 0.004066 (2.151904e −03, 0.0059830861) 3.18e −05 839.339

β2 0.000052 (3.634094e −06, 0.0000995568) 0.0349
model 3.2.3 β1 0.006168 (0.005570462, 0.006766407) < 2e −16 843.429

γ
(∗)
0 −0.001360 (−0.005841995, 0.003110133) 0.551

model 3.2.4 β
(∗)
1 0.001799 (−5.946579e −04, 0.0041957092) 0.141026 833.4980

β2 0.000131 (6.140107e −05, 0.0002005684) 0.000224
γ0 −0.0101950 (−1.667789e −02,−0.0037132991) 0.002052

model 3.2.5 β1 0.007627 (0.007003263, 0.008251734) < 2e −16 601.387
γ0 −0.2666711 (−0.300684259,−0.232810832) < 2e −16
γ1 0.050600 (0.042678222, 0.058525732) < 2e −16

model 3.2.6 β1 −0.0033165 (−0.0057649541,−0.0008644362) 0.00798 523.728
β2 0.0003357 (0.0002629323, 0.0004084770) < 2e −16
γ0 −0.315384 (−0.3509311996,−0.2799677953) < 2e −16
γ1 0.0376619 (0.0292620303, 0.0460667410) < 2e −16

Table 8: Coefficients of different models for 62 day referrals for section 3.2.
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31 day referrals coefficient value confidence interval (2.5%, 97.5%) p-value BIC
model 4.1.1 β1 0.0016012 (0.001343024, 0.0018593950) < 2e −16 54689.03
model 4.1.2 β1 4.008e −03 (2.991282e −03, 5.025614e −03) 1.14e −14 54674.51

β2 −6.294e −05 (−8.866774e −05,−3.722563e −05) 1.62e −06
model 4.1.3 β1 0.002282 (0.001964997, 0.0025999839) < 2e −16 54645.22

γ0 −0.009113 (−0.011590176,−0.0066386229) 5.43e −13
model 4.1.4 β1 1.917e −03 (6.526079e −04, 3.181708e −03) 0.00297 54653.40

β
(∗)
2 1.106e −05 (−2.596156e −05, 4.806155e −05) 0.55810

γ0 −9.876e −03 (−1.343259e −02,−6.319272e −03) 5.26e −08
model 4.1.5 β1 0.0038119 (0.003480981, 0.0041427747) < 2e −16 53664.28

γ0 −0.2949790 (−0.313747501,−0.2762576298) < 2e −16
γ1 0.0491720 (0.044758340, 0.0535869194) < 2e −16

model 4.1.6 β1 −3.133e −03 (−0.0044260670,−0.0018394747) 2.05e −06 53554.83
β2 2.148e −04 (0.0001760675, 0.0002534410) < 2e −16
γ0 −3.271e −01 (−0.3467038561,−0.3075116556) < 2e −16
γ1 4.084e −02 (0.0361839733, 0.0455062082) < 2e −16

Table 9: Coefficients of different models for 31 day referrals for section 4.1.

62 day referrals coefficient value confidence interval (2.5%, 97.5%) p-value BIC
model 4.1.1 β1 0.0058459 (0.005362238, 0.006329618) < 2e −16 33966.92
model 4.1.2 β1 4.225e −03 (2.309705e −03, 6.143930e −03) 1.56e −05 33972.47

β
(∗)
2 4.191e −05 (−6.105371e −06, 8.987178e −05) 0.0869

model 4.1.3 β1 0.0060242 (0.005426132, 0.006622378) < 2e −16 33974.41

γ
(∗)
0 −0.0022712 (−0.006761063, 0.002207336) 0.3208

model 4.1.4 β
(∗)
1 1.843e −03 (−5.508759e −04, 0.0042411161) 0.131565 33970.46

β2 1.253e −04 (5.570707e −05, 0.0001948904) 0.000416
γ0 −1.073e −02 (−1.721971e −02,−0.0042381830) 0.001197

model 4.1.5 β1 0.0075826 (0.006958306, 0.008207108) < 2e −16 33703.54
γ0 −0.2844607 (−0.318525795,−0.250548434) < 2e −16
γ1 0.0532337 (0.045296133, 0.061175943) < 2e −16

model 4.1.6 β1 −3.573e −03 (−0.0060220024,−0.0011212322) 0.00426 33627.54
β2 3.422e −04 (0.0002693608, 0.0004148734) < 2e −16
γ0 −3.341e −01 (−0.3696486930,−0.2985956790) < 2e −16
γ1 4.005e −02 (0.0316366765, 0.0484709246) < 2e −16

Table 10: Coefficients of different models for 62 day referrals for section 4.1.
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B PHS DATA SETS

B PHS Data Sets

Link Recorded data Time (last) Region Other factors
Cancer waiting
times

nr of referrals,
nr treated within
standard (31/ 62)

quarterly (2012Q1
→ 2021Q3)

HB,HBT cancer type

Covid positive cases,
cumulative cases,
deaths, cumu-
lative deaths,
tests, hospital
admissions, ICU
admissions

daily (2020-02-28) HB age and sex, de-
privation

Cancer incidence incidence all
ages, crude rate,
european age-
standardised,
world age-
standardised,
standardised
incidence ratio

annual (2019) HB diagnosed cancer
site, sex

Cancer mortality deaths all ages,
crude rate, eu-
ropean age-
standardised,
world age-
standardised,
standardised
mortality ratio

annual (2019) HB diagnosed cancer
site, sex

Population esti-
mates

nr of people per
age

annual (2020) HB sex

A&E waiting times nr of attendances,
nr meeting tar-
get, attendance
greater than 8
hrs, attendance
greater than 12
hrs

monthly (2021-11) HBT treatment hospi-
tal, department
type

Diagnostic waiting
times

nr on waiting list,
nr waiting over 4
weeks, nr waiting
over 6 weeks

monthly (2021-09) HBT test type

Referral to treat-
ment

within 18 weeks,
over 18 weeks

monthly (2021-09) HBT speciality (all)
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https://www.opendata.nhs.scot/dataset/cancer-waiting-times
https://www.opendata.nhs.scot/dataset/cancer-waiting-times
https://www.opendata.nhs.scot/dataset/covid-19-in-scotland/resource/2dd8534b-0a6f-4744-9253-9565d62f96c2
https://www.opendata.nhs.scot/dataset/annual-cancer-incidence/resource/3aef16b7-8af6-4ce0-a90b-8a29d6870014
https://www.opendata.nhs.scot/dataset/cancer-mortality/resource/57f0983f-864e-4dbd-b3dc-ea8f16de83a4
https://www.opendata.nhs.scot/dataset/population-estimates/resource/27a72cc8-d6d8-430c-8b4f-3109a9ceadb1
https://www.opendata.nhs.scot/dataset/population-estimates/resource/27a72cc8-d6d8-430c-8b4f-3109a9ceadb1
https://www.opendata.nhs.scot/dataset/monthly-emergency-department-activity-and-waiting-times/resource/2a4adc0a-e8e3-4605-9ade-61e13a85b3b9
https://www.opendata.nhs.scot/dataset/diagnostic-waiting-times
https://www.opendata.nhs.scot/dataset/diagnostic-waiting-times
https://www.opendata.nhs.scot/dataset/18-weeks-referral-to-treatment
https://www.opendata.nhs.scot/dataset/18-weeks-referral-to-treatment


B PHS DATA SETS

Cancelled opera-
tions

total cancelled, by
patient reason, by
clinical reason, by
capacity reason,
by other reason

monthly (2021-11) HBT -

Additions and re-
movals waiting list

additions, re-
movals, referred
back to GP,
transferred, treat-
ment no longer
required, other

quarterly (2021
Q3)

HBT speciality, patient
type

Hospital beds available beds,
occupied beds,
daily avg

quarterly (2021
Q2)

HB hospital, speciality

Mental health in-
patient

admissions, dis-
charges, stays,
patients, hospital
residents

financial year
(2020/2021)

HBT data source

Cancer diagnosis number of cancer
diagnosis

weekly
(2019/2021)

HBT cancer type, age
group, sex
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https://www.opendata.nhs.scot/dataset/hospital-beds-information
https://www.opendata.nhs.scot/dataset/mental-health-inpatient-activity/resource/7e99efb9-2d73-46e1-bdce-59b00ed20a0f
https://www.opendata.nhs.scot/dataset/mental-health-inpatient-activity/resource/7e99efb9-2d73-46e1-bdce-59b00ed20a0f
https://www.opendata.nhs.scot/dataset/mental-health-inpatient-activity/resource/7e99efb9-2d73-46e1-bdce-59b00ed20a0f
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