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Abstract

In this paper we explore the usage of stochastic optimization in deploying an infrastructure
built of pipes and ships within the UK in order to transport CO2 from clusters (sources) to
sequestration sites in parts of the Northern Sea and East Irish Sea (sinks). After visiting
some background of the problem, this paper looks to implement a multistage stochastic
linear framework with a nodal formulation. The implementation will lead to a model which
can show the most efficient layout of the infrastructure to transport the most CO2 based on
a stochastic variable of unknown CO2 capture from each cluster.

For model files and assets please see:
www.github.com/LucasBeerens/stochastic-optimisation-co2-transport
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Part I

Introduction
"Naturally, we can propose many
sophisticated algorithms and a
theory but the final test of a
theory is its capacity to solve the
problems which originated it."

George Dantzig [4]

The everyday world that we live in is encapsulated by the decisions that we as humans make.
As a result, vast problems are created that need to be solved, optimized, and interpreted. For-
tunately, there exist many different mathematical techniques in approaching these.

Consider the situation where you want to check how to get from A to B in the shortest time,
using roads and public walkways. Traditionally we would call this a Deterministic Optimisa-
tion problem. A number of algorithms could be run and you are left with a solution to the route
you should take. Now add into that scenario that you do not know where B actually is, simply
a rough estimate, and that the only maps you have access to are from the 1970s. All of a
sudden you cannot necessarily find the one set path, B could be further out than expected or
paths could no longer exist. What we have imagined here is deemed to require Stochastic
Optimisation. Throughout this paper, we will be exploring how to bring together stochastic
optimization methods to solve one of the biggest problems being tackled in the climate change
sector, carbon capture usage and storage (CCUS).

The Problem:

In 2018, the Committee on Climate Change (CCC) for the UK identified that CCUS was vital to
achieving a significant drop in CO2 emissions [3]. The CCC report detailed 6 industrial centres
which a potential project could take into account. We will refer to these sites as ‘(industrial)
clusters’. Later on, it has been identified that there are four main sections under the ocean
beds of the Northern and Irish seas which each have several sections where CO2 could be
stored. For us these are ‘sequestration sites’. The background of how we will model these
will be addressed in Part II.

Research Question:
Can we build a model which optimally plans infrastructure for the implementation of
CCUS across the UK, without knowing the exact amount of CO2 we are able to capture
from a cluster?

In our model, a set of decisions will be made around the building of a network of pipes and ships
as well as infrastructure for sequestration within given budgets of capital and operational costs
(later to be referred to as CAPEX and OPEX budgets respectively) in order to transport the
CO2 from clusters to sequestration sites. Pipes and ships are selected as the available pieces
in our infrastructure as both are already highly obtainable and accepted by those working with
CCUS.
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Figure 1: Map of the UK showing clusters and sites. (Image from: Mathematica)

Mathematical Rigour:

This paper will also aim to explain the use of stochastic optimization utilized in our problem. In
particular, we will be looking at how our model is built around the basis of using a multistage
stochastic linear program of the form,

max{b0 ⋅ x0+Eξ̃1∣ξ0
[Q1(x0,ξ1)] ∶ x0 ∈ S0},

which takes a recursive benefit-to-go function Qt . These terms will be explained in Part III.
The model we have created, and will explore in this paper, tries to take into account most of the
constraints of the real-life situation. Some constraints which are vital to the situation are: the
situation proposed depends on a pre-designated budget, once a sequestration site is full we
cannot add any CO2 to it, the ships and pipes transport an amount of CO2 which is between 0
and maximum capacity.

The Correct Choice:

The key idea which sits behind stochastic optimization is that at the end of running the model we
will be provided with a decision that maximizes the objective function, in our case the amount
of CO2 stored, which is calculated via an expectation across all possible scenarios. Part IV
will engage in a discussion of how we implement the optimization programme in the language
Mosel. Some functions to conduct a future sensitivity analysis will also be suggested.

For ease of exploration of this paper we once again note here the following structure:

• Part II explores the background of the model,

• Part III presents the reader with the mathematical model and constraints,

• Part IV runs our model for some data and looks to where analysis could be performed.

• Part V will draw some conclusions for our project.
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Part II

Background of the Model

"Everything is physics and math."

Katherine Johnson

The UK government has expressed the goal of deploying CCUS from 2025 [5]. To recap, our
problem lies around looking to optimize the amount of CO2 which is transported from clusters
to sequestration sites. The model we will build in this paper considers that the infrastructure for
the CCUS will consist of pipes and ships. In a real world implementation, the CO2 would take
the following journey through the infrastructure,

1. CO2 is captured at each cluster.

2. In the case where the CO2 is transported through pipelines it is pressurized, if the CO2 is
transported through ships it is also liquefied (cooling and compressing in order to increase
density for cost-effective transport) at a liquefaction plant.

3. Temporarily CO2 is then stored in liquid form in tanks. This is necessary as CO2 is pro-
duced continuously but for ships, they will arrive in discrete runs.

If ships to transport the CO2 then it would be loaded onto a carrying ship and take one of the
following paths.

• Port to Port Shipping: The CO2 is unloaded onshore in liquid form to temporary storage
tanks. Then, it is pumped at heated and finally transferred via pipelines to a long-term
storage site. This is the plan established by the Norwegian CCUS and it is estimated that
4Mt of CO2 could be stored per year (for reference the total CO2 production of Norway is
43Mt per year).

• Port to Storage Shipping 1: The CO2 is pumped and heated on the ship and transferred
to the injection well of an offshore storage site.

• Port to Storage Shipping 2: The CO2 is transferred in liquid form to an offshore platform
where it is stored temporarily and then pumped and heated and then stored in an offshore
storage site.

Alternatively, if pipes are used for transportation, then pipeline from shore to an offshore stor-
age site is built through which to send the CO2 .

In all the situations above it may seem that a solution is obvious to the reader, simply link
each cluster with the nearest site which could hold the capacity. This would be the determin-
istic optimization situation. However as earlier addressed we are in a stochastic setting. This
leads us to a reconsideration, what happens if we don’t know how much CO2 is captured or
emitted from a certain site? In this case the solutions is not so clear and it is necessary to
develop a more sophisticated model.
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1 DETERMINISTIC VS STOCHASTIC OPTIMIZATION

1 Deterministic vs Stochastic Optimization

In any of the cases presented above in terms of CO2 shipping, one would be able to set up a
deterministic program which would tell us which ships and pipes should be placed where and
how much CO2 would be stored in each sequestration site. This deterministic program would
return an optimal setup of our infrastructure, denoted by x∗0 as below.

Definition 1: Deterministic Optimization Formulation

x
∗
0 = arg max

x
{c ⋅ x∣Ax ≤ b},

where c are the objective coefficients, and Ax ≤ b are the system of linear constraints.

Of course this set-up would be ideal if we could measure the exact storage capacity of a se-
questration site and the amount of CO2 that a cluster produces. Unfortunately we cannot and
therefore we are left in the stochastic situation whereby we have to take the average of a bunch
of scenarios and present an individual with an expected result based on the chances of different
scenarios occurring. A stochastic optimization formulation is presented below.

Definition 2: Static Stochastic Optimization Formulation

x
∗
0 = arg max

x
{E[F (x,ξ)]∣x ∈ X ⊆ R

n},

where X is some decision vector, ξ is a stochastic process and F is a function which
progresses the process.

We see that indeed now whilst we are still taking the minimum of the problem, the objective
coefficients and our optimiser, x, have been replaced with the expectation of a function that
progresses the process. Later on in this paper, we will explore the form of the function more
thoroughly. It should hopefully by now be clear to the reader why we are in the stochastic setting
for our optimization, but should an individual want to read more into this the work of Ahmed [1]
may be useful for building the understanding link.
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3 PHASED ROLLOUT

2 Clusters, Intermediate Storage and Sequestration Sites

For the purposes of this project, we will work on the assumption that the unknown size of the
sequestration sites will be covered by us generalising these to four areas. That is to say, we
will be looking at four parts of the sea which each contains dozens of individual sequestration
sites under the ocean bed and our model will not reach the situation where they become full
or unable to take a load of CO2 required. Of course, a development of this model could be to
incorporate all the ‘sink’ nodes that the individual sites present and investigate how stochastic
optimization would amend the results to an exact site.

In our problem, the stochastic nature of the CO2 produced at the clusters will be preserved
and our problem will look to optimize while operating under this unknown. Typically in a true
model, we would split the journey of the CO2 into three different types of nodes:

1. Clusters (CL): These are the initial sites from which the CO2 is collected.

2. Intermediate Storage (IS): Here the CO2 is either stored in storage tanks before it can
be loaded onto ships or potentially gets sent through an alternative pipe to a site.

3. Sequestration Sites (SQ): The endpoint of the CO2 where it is deposited into the under-
ocean storage parts.

An important decision we have made for the purposes of this report is that we will absorb all
potential ‘IS’ nodes into the group of ‘CL’ nodes. That is to say, we will simply assume that CO2

only flows directly from a cluster to another cluster or sequestration site. The reasoning behind
this decision is that the we consider large time steps and will simply include any additional costs
within the price of transportation. That said, perhaps with more time one could investigate the
effects of including intermediate storage in the model.

3 Phased Rollout

The UK government has recently made decisions around the phased rollout of CCUS. It has
been decided that the Teeside cluster will be the first to implement the carbon capture infras-
tructure. Following this, the Merseyside, Humberside and St Fergus clusters will be next. After
this, the rest of the clusters will be rolled out. We will incorporate this information into our model
through the information that we feed it. Whilst in the next part we will build a model which con-
siders the entire CO2 emissions of a cluster to be stochastic, we will then constrain our model
with expert data to only consider the amount we can capture as stochastic as ultimately this
limits our final goal more.

In our model we will incorporate a finite set of time steps. This is so that we can consider
different budgets at different time steps with which to build infrastructure as would occur in a
real world implementation. In part we also do this as the model may be tempted to build all in-
frastructure immediately in time step 1. This unfortunately in the real world isn’t able to happen
due to some areas not being prepared for a variety of reasons and hence will not be awarded
funding.
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4 THE MODEL

Part III

Dynamic Modelling

"It is better to solve one problem
five different ways than to solve
five problems one way."

George Polya

Having explored the background to our problem in the previous section, we will now look to
explore how we will go about creating a dynamic model. As mentioned previously, we will
be implementing a stochastic optimization. This will affect the way our objective function is
constructed and how our decision variables are constrained. The structure of the parameters
and the constraints will look akin to those of a deterministic programming setup. We develop
our model in Section 4 before specifying the values of its parameters in Section 5.

4 The Model

Our model aims to optimize the amount of CO2 sequestered given a certain budget. Within this
we however wish to consider that the following may vary:

1. CO2 emissions,

2. Money invested.

The model itself is built up to consider CO2 emissions as a stochastic variable, whilst the money
invested will be varied manually later on when testing the model. Below we present the frame-
work of multistage stochastic linear programming (MSSLP). We will be modelling our CO2 cap-
ture process using an MSSLP, as the decisions around infrastructure implementation will be
made in discrete time steps.

Definition 3: Multistage Stochastic Linear Programming (MSSLP)

For some sequence of decision vectors through time, ξt = (ξ1,ξ2, ...,ξT ) we have that the
optimal solution x∗0 is given by,

x
∗
0 = arg max

x0∈S0

{b0 ⋅ x0+Eξ̃1∣ξ0
[Q1 (x0,ξ1)]}

where we define the benefit-to-go function Qt recursively by:

Qt (xt−1,ξt ) = max
xt∈St (x1,...,xt−1,ξt )

{bt ⋅ xt +Eξ̃t+1∣ξt
[Qt+1 (xt ,ξt+1)]}

and QT+1 = 0.

The interpretation of the above formulation is as follows:

• ξt is the stochastic information (or realization) that we learn in each step.
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4.1 Glossary 4 THE MODEL

• x0 is the first stage decision and xt is the decision (or policy) at time t . It is important to
note that, while x0 is well defined independently of any realizations ξt or further decisions
xt , the decision xt are themselves dependant on previous decisions and realizations.
Note for example that we require that xt be in the constraint set St (x1, ..., xt−1,ξt ). The fact
that xt depends on the realizations of some random processes implies that it is a priori
impossible to define what an optimal solution (x0, ..., xT ) is or what it looks like. We will
discuss later in 6.1 how we deal with this problem in a way that satisfactorily captures
not only what an optimal initial decision x0 is but also how we can expect our decisions
to evolve. Further, we note that in the standard formulation the parameters bt and the
constraint sets St only depend on the values of xt and ξt . In our case, it is also necessary
to incorporate dependence on previous decisions (x0, ..., xt−1). We will elaborate later on
why this is the case.

• bt is the benefit of implementing a decision xt . In a general case, this could depend on ξt

but in our case, this will not occur as we will see later.

• Our time steps will be 5 years ‘jumps’ and go through decisions that need to be made
after 2025 through to 2050.

• The benefit-to-go function is the single evaluation of the stochastic optimization problem
one-time step in the future.

Let us consider why it is useful for us to formulate our problem as an MSSLP. It should by now
be clear to the reader that decisions around infrastructure in the system will be implemented in
time steps. This demands from our set-up that we should be able to inform later calculations of
the program based upon earlier decisions. Furthermore, it is important to recognize that due to
the stochasticity of the CO2 release we also have the situation where the random variable will
update in each time step.

4.1 Glossary

Below we define the sets and parameters that will be employed in the model. It is recommended
that the reader becomes familiar with the notation so that when it comes to considering the
constraints on the model it is easier to understand the mathematical meaning. Here we note
that we will use super indices. Consider a product space of the form,

X = A
a
×B

b
,

with a, b ∈N. Then, given x ∈ X we use super-indices to denote whether we are considering the
component of x in Aa or in B b, that is x is has as components:

x
(i )
j ,k

i = 1, 2; j = 1, ..., a; k = 1, ..., b.

4.1.1 Sets

• C L is the set of industrial clusters where CO2 is captured. This set contains 6 elements as
marked red in Figure 1. We index this set by the sub-index cl .

• SQ denotes sequestration sites where CO2 is placed under the ocean bed. This set con-
tains 4 elements as marked blue in Figure 1. We index this set by the sub-index sq.

• Due to considering transport from elements of C L to other items in C L and in SQ we
introduce the union C L∪SQ. This set will be sub-indexed by cs.

7



4.1 Glossary 4 THE MODEL

• Sp are the types of pipes that can be built. We will consider pipes of diameter 10, 20, 25, 30
and 35 inches as were studied by MIT [6]. We index this set by the sub-index sp.

• Ssh are the types of ships that can be built. We take these to be ships of capacity
10000, 20000, 30000 tonnes of capacity as were studied by BEISD [2]. We index this set
by the sub-index sh.

• K contains the kinds of ways in which CO2 can be captured. We will consider the 3 levels
of CO2 capture: cheap, medium and expensive. Here cheap and medium will be coming
from different types of power-plant capture whilst the expensive will be direct air capture.
We index this set by k.

• {0, 1, ..., T } are the time steps of our model. This set will be indexed by either t or s where
appropriate.

Furthermore, to simplify many expressions we will write expressions such as ∀cl to signify
∀cl ∈C L. An analogous notation is used for all other indexes and their respective domains.

4.1.2 Parameters

• a = ∣C L∣ is the number of industrial clusters (sources).

• b = ∣SQ∣ is the number of sequestration sites (sinks).

• λcc ∈ R+ is the cost of increasing the capture rate of CO2 of an industrial cluster by 1 tonne.

• λoc ∈ R+ is the operating cost associated with the capture rate of 1 tonne of CO2 .

• sc ∈ R
∣Ssh ∣
+ is a vector that tells us the maximum amount of CO2 each type of ship can

transport over the entire time period.

• pc ∈ R
∣Sp ∣
+ is a vector that tells us the maximum amount of CO2 each kind of pipe can

transport over the entire time period. We consider that this is independent of the locations
between which the pipes travel.

• scc ∈ R
∣Ssh ∣
+ contains the information on the capital cost of building a ship in Ssh. We note

that this cost is independent of the location between which ships travel.

• soc ∈ R
a×(a+b)×∣Ssh ∣
+ tells us the operating cost per ton of CO2 transported. soccl ,cs,sh is the

operational cost of transporting a ton of CO2 1km between a cluster cl and a cluster or
sequestration site cs.

• pcc, poc ∈ R
a×(a+b)×∣Sp ∣
+ tell us the capital cost and operating cost of pipes. More explicitly

we have pcccl ,cs,sp and poccl ,cs,sp are respectively, the cost of building pipeline of type
sp ∈ Sp from cl ∈ C L to cs ∈ C L ∪ SQ, and the cost of sending 1 tonne of CO2 through this
pipeline.

• qcc, qoc ∈ Rb
+ are respectively the capital and operating cost of sequestration material for

1tCO2.

• MCt ∈ R+ is the CAPEX budget at time t .

• MOt ∈ R+ is the OPEX at time t .

• NO ∈ R+ is the maximum operational budget we allow at the end of the simulation.

• C A ∈ R
a
+ is the maximum capacity of a sequestration site.

8



4.2 Decision Vector 4 THE MODEL

4.2 Decision Vector

Having introduces the sets and variables we will be using, it remains to see how these are
implemented to the MSSLP definition for our model. In SO the decision is the part of the model
that is determined in order to maximize the benefit, in our case the amount of CO2 produced.
We set the decision at stage t to be

xt = (cdt , sdt , pdt , qdt ).

Where the components cdt , sdt , pdt , qdy respectively determine how much CO2 we choose to
capture, in addition to the infrastructure of the ships, pipes and sequestration at stage t . We
now elucidate the exact structure of each of these components.

4.2.1 Capture decision

The capture decision is
cdt ∈ R

a⋅∣K ∣
+ ×R

a⋅∣K ∣
+ ,

where cd
(1)
t ,cl ,k

indicates the capacity for CO2 capture of type k that we add at stage t in the

cluster cl and cd
(2)
t ,cl ,k

is the amount of CO2 we capture at cl at time step t . This last element of
the capture decision is motivated by the fact that it will be necessary to adjust how much CO2

is captured based on the quantity of CO2 that each cluster produces at time t as well as other
factors such as the transport infrastructure that has been built. For example, in the case where
the rate of CO2 production of a cluster went below the capacity of our infrastructure, we would
now use this CO2 production as a bound for how much we actually capture as opposed to the
amount of CO2 our infrastructure says we could capture. Similarly, we would not capture more
CO2 than we could transport to sequestration sites.

4.2.2 Shipping decision

The shipping decision is

sdt ∈N
∣Ssh ∣×Na×(a+b)×∣Ssh ∣×Ra×(a+b)×∣Ssh ∣

Where each component has the following meaning.

• The first component sd(1)
t ∈ N

∣Ssh ∣ indicates the number of each kind of ship that are built
at time step t . Due to the time, it takes to build a ship we consider that these ships will
only become available for transport at stage t +1.

• At each time step t each of the kinds of ships that have been built at stages 1, ..., t − 1
are assigned a port where they will be based and a cluster or sequestration site to which
they will transport CO2 (transport of CO2 between clusters could prove advantageous in
the case where they are sufficiently nearby and one of the clusters is connected to a
sequestration location) during the current stage t (both these assignation may change as
a ship may be required at different ports as CO2 production varies). All this information is
encoded in the component sd(2)

t ∈N
a×(a+b)×∣Ssh ∣. Namely, sd

(2)
t ,cl ,cs,sh

is the number of ships
of type sh that are transporting from cl to cs at time t .

• The third component sd(3)
t ∈ R

a×(a+b)×∣Ssh ∣ indicates the amount of CO2 which ships trans-
port between a given capture location and cluster or sequestration site at time t . This
element of the decision is necessary as it may be necessary to adjust how much CO2 is

9



4.3 Stochastic Information 4 THE MODEL

transported based on the quantity of CO2 captured and made available for transportation.
In this case, we consider that the change in time t instantly affects the amount of CO2

shipped in this step (and not the next one).

4.2.3 Piping decision

The piping decision presents a similar structure to that of the shipping decision. The main
difference between the two is that, once built, we fix where the pipes will be transporting CO2 to
and from. Therefore we only decide how many pipes and what kind of pipes are built between
clusters and sequestration sites, in addition to the capacity at which each pipe operates. We
are assuming that all types of pipes can be built in all clusters. Thus we have

pdt ∈N
a×(a+b)×∣Sp ∣×Ra×(a+b)×∣Sp ∣.

• pd(1)
t ∈N

a×(a+b)×∣Sp ∣ indicates the number of pipes we build at stage t from a given cluster
to another cluster or sequestration location. As with the ships we consider that the pipes
available at stage t are those that have been built at stages 1, ..., t −1.

• The component pd(2)
t ∈ R

a×(a+b)×∣Sp ∣ indicates the capacity which is used during time stage
t by pipes transporting CO2 from a given cluster to another cluster or sequestration loca-
tion. As for ships we consider that the change in time t affects the amount of CO2 shipped
in this step (and not the next one).

4.2.4 Sequestration decision

The final decision component is the storage decision. This decision presents an identical struc-
ture to the capture decision.

qdt ∈ R
b
+×R

b
+.

• Where qd(1)
t ∈ R

+
b tells us how many tonnes of CO2 sequestration capacity we build at a

storage site sq at time t . As with the rest of the infrastructure components, we assume
this capacity becomes available the time step after it is built.

• Where qd(2)
t ∈ R

+
b tells us how many tonnes of CO2 sequestration we choose to use at

each storage site at time t . The amount we can use will be constrained by how much we
have built is previous steps.

4.3 Stochastic Information

The stochastic data we consider is for t ≥ 1:

ξt =Ct ,

where Ct ∈ R
a×∣K ∣
+ holds in its components the information regarding how many holds tonnes of

CO2 of each type are produced at step t for each cluster.

For the purposes of simulation, the following could be considered,

ξt ,cl = ξt−1,cl + X t ,cl .

One could then choose to look at discretised versions of a variety of distributions, some exam-
ples of these could be:
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4.4 Objective function 4 THE MODEL

1. X t ,cl taking values from the set {−kC0, 0, kC0} all with equal probability and where the
family {X t ,cl } are independent for all t ∈ {1, ..., T }, cl ∈C L.

2. X t ,cl ∼ N (0,σt ), where we take the parameter σt to be the variance in the CO2 production
from each cluster at time t and as before we consider the family {X t ,cl } to be independent.

4.4 Objective function

As previously explained our model aims to maximize the amount of CO2 stored at time T . Thus
we have that the benefit obtained at time t is the total CO2 stored at time t which is in turn

bt ⋅ xt ∶= ∑
cl∈C L

∑
sq∈SQ

( ∑
sp∈SP

pd
(2)
t ,cl ,sq,sh

+ ∑
sh∈Ssh

sd
(3)
t ,cl ,sq,sp

) . (1)

The left-hand term in the sum totals the amount of CO2 taken from each capture location to
each sequestration location through pipes. The right-hand term is analogous where now the
CO2 is transported through ships. Note that neither the stochastic information nor the previous
decisions (x0, ..., xt−1) play a role in the definition of bt . However, they will interact with our prob-
lem through the constraint set for xt , and in particular the set where and pd

(2)
t ,cl ,sq,sh

, sd
(3)
t ,cl ,sq,sp

must lie.

4.5 Constraints

We now discuss the constraints that govern the preceding variables. Encapsulated within these
constraints are various assumptions we impose on our model. For this reason, we will carefully
explain all the assumptions made and how they lead logically to each term in the equations that
follow. In this way, we hope that the reader may gain full insight into the workings of the model,
and thus, may be able to adjust them to any new data and information that may arise.

4.5.1 Capture, Transport and Sequestration Constraints

Firstly we present the constraints that determine the maximal theoretical capacity for CO2 cap-
ture, transport, and storage. These are given by the following equations,

cd
(2)
t ,cl ,k

≤

t−1

∑
s=0

cd
(1)
s,cl ,k

∀t , cl , k (2)

cd
(2)
t ,cl ,k

≤Ct ,cl ,k ∀t , cl , k (3)

pd
(2)
t ,cl ,cs,sp

≤

t−1

∑
s=0

pd
(1)
s,cl ,cs,sp

pcsp ∀t , cl , cs, sp (4)

sd
(3)
t ,cl ,cs,sh

≤ sd
(2)
t ,cl ,cs,sp

scsh ∀t , cl , cs, sp (5)

qd
(2)
t ,sq ≤

t−1

∑
s=0

qd
(1)
s,sq ∀t , cl , cs, sp (6)

Equations (2), (3) express that we cannot capture more CO2 than the capacity we have built-
in previous steps and the amount of CO2 a cluster produces allow respectively. Equations
(4), (5) constrain the maximum amount of CO2 that can be transported through pipes and
ships respectively and (6) limits the amount of CO2 which can be stored. Note that, due to the
difference in the way the shipping decision is defined, the theoretical capacity for shipping is not

11



4.5 Constraints 4 THE MODEL

expressed as a sum (this is different from what occurs with the theoretical bound for capture,
pipeline transport, and sequestration). This occurs essentially because the mobility of ships
makes it so that we decide where all ships are based in each step instead of just the ones we
just built.

In interpreting the following constraints it is useful to visualize the model as a network formed
of the pipes and ships built in prior time steps. This network is modified in each time step and
determines how the CO2 can flow within it and any associated costs that are incurred through
operating and constructing it.

1. In our network, we cannot transport more CO2 from an industrial cluster than the amount
of CO2 that it holds.

∑
k∈K

cd
(2)
t ,cl ,k

+ ∑
cl ′∈C L

∑
sp∈Sp

pd
(2)
t ,cl ′,cl ,sp

+ ∑
cl ′∈C L

∑
sh∈Sh

sd
(3)
t ,cl ′,cl ,sh

≥ ∑
cs∈C L∪SQ

∑
sp∈Sp

pd
(2)
t ,cl ,cs,sp

+ ∑
cs∈C L∪SQ

∑
sh∈Sh

sd
(3)
t ,cl ,cs,sh

∀t , cl (7)

The first summand indicates the quantity of CO2 that is captured at the cluster cl , the
second summand is the amount of CO2 that is transported through pipes to cl through
all other capture locations cl ′ and the third indicates the analogous situation for transport
through ships. the fourth and fifth summands, on the right-hand side of the inequality,
represent how much CO2 is transported from cl through pipes and ships respectively to
other clusters and sequestration sites.

2. The amount of CO2 we store at each sequestration site is the sequestration capacity that
is being used.

∑
cl∈C L

( ∑
sp∈SP

pd
(2)
t ,cl ,sq,sp

+ ∑
sh∈Ssh

sd
(3)
t ,cl ,sq,sh

) = qd
(2)
t ,sq ∀t , sq (8)

The sums on the left-hand side indicate the amount of CO2 which is piped and shipped
from all industrial clusters to a storage site sq. Whereas the right-hand side indicates the
total capacity for storage which is usable at time step t (that is, which has been installed
before stage t).

3. At stage t we can only use the ships that have been built at stages 1, ..., t −1.

∑
cs∈C L∪SQ

∑
cl∈C L

sd
(2)
t ,cl ,cs,sh

=

t−1

∑
s=0

sd
(1)
s,sh

∀sh ∈ Ssh , ∀t ≤ T (9)

The first summand indicates the total number of ships of type sh that have been assigned
for CO2 transport and the second is the number of ships of this type that have been built
in previous stages.

4. We have that the total amount of CO2 sent to a sequestration site at the end of the duration
of the project (left-hand side) cannot exceed the total capacity of the sequestration site.

T

∑
t=0

∑
cl∈C L

( ∑
sp∈SP

pd
(2)
s,cl ,sq,sp

+ ∑
sh∈Ssh

sd
(3)
t ,cl ,sq,sh

) ≤C Asq , ∀sq (10)

12



4.5 Constraints 4 THE MODEL

The left-hand sum sums over t , the amount of CO2 transported through pipes at time t to
sq. Whilst the second summation is the analogous term for transport through ships. In
practice we will set Csq to be infinite as, since we are amalgamating various sequestration
sites into a single one this capacity will never be surpassed. However we include this
constraint in the case where a different approach is taken and sequestration sites are
considered separately.

5. There can be no transport from an industrial cluster to itself.

pd
(1)
t ,cl ,cl ,sp

= pd
(2)
t ,cl ,cl ,sp

= sd
(2)
s,cl ,cl ,sh

= sd
(3)
t ,cl ,cl ,sh

= 0, ∀t , cl , sp, sh.

4.5.2 Budget Constraints

To be able to formulate our model within the framework of stochastic linear optimization we con-
sider that all costs depend linearly on the decision variable. For example, the cost of building
infrastructure for 106 tonne of CO2 capture per year is ten times the cost of building 105 infras-
tructure for CO2 storage. Therefore it is important to note that only considers economies of scale
in an averaged sense. We say average because the prices of construction and operation that
we take are from literature where authors already incorporate in some way economies of scale.
Further work could investigate this problem through a formulation that could explicitly incorpo-
rate economies of scale. This could be done, for example, by discretizing some variables and
associating to each discrete value a different cost which incorporates these economies of scale.

The budget constraints which we consider are therefore formulated as below.

1. The price of construction
PCt = PCCt +PC Tt +PQt .

Where PCCt , PC Tt , PCQt are the price of construction for facilities for capture, transport
and sequestration at stage t . We have that these terms are constructed as

PCt = ∑
k∈K

∑
cl∈C L

λcc,k cdt ,cl ,k + ∑
sh∈Ssh

sccsh sd
(1)
t ,sh

+ ∑
sp∈Sp

∑
cl∈C L

∑
cs∈C L∪SQ

pcccl ,cs,sp pd
(1)
t ,cl ,cs,sp

+ qcc ∑
sq∈SQ

qd
(1)
t ,sq (11)

2. The price of operating the facilities once built is,

POt = POCt +POTt +POSt +POQt .

Where POCt , POTt , POQt are the operational price for infrastructure for the capture, trans-
port, and sequestration at stage t . We take operating costs to be proportional to the
amount of CO2 captured and transported. In reality, some prices will be incurred even if
the equipment is not being used, however, we consider this assumption to be reasonable
and it is necessary in order to maintain linearity. Explicitly, we have

POt = ∑
k∈K

∑
cl∈C L

λoc,k cd
(2)
t ,cl ,k

+ ∑
sh∈Ssh

∑
cl∈C L

∑
cs∈C S

socsh sd
(3)
t ,cl ,cs,sh

+ ∑
sp∈Ssp

∑
cl∈C L

∑
cs∈C S

t

∑
s=0

poccl ,cs,sp pd
(3)
s,cl ,cs,sp

+ qoc ∑
sq∈SQ

qd
(2)
t ,sq (12)
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4.6 Modelling Randomly Constrained CO2 Capture 4 THE MODEL

Note that in particular, we assume that the operating cost of the ship is independent of the
locations between which they travel. In practice, there may be some regional variations
in labor costs but we count these as negligible to simplify our model. This said our price
constraints are as follows:

0 ≤ MCt −PCt ∀t (13)
0 ≤ MOt −POt ∀t (14)
0 ≤ NO −POT (15)

These constraints impose that the money used cannot surpass the budget supplied in
each time step cannot. In particular we do not consider the case where money can be
saved between time steps for future use. Though this could be another reasonable as-
sumption. The first two equations (13)-(14) represent the need to stay within the CAPEX
and OPEX budget for each time step whereas equation (15) represents the need to not
have a final operational budget that is too high. We include this constraint so that the
solution will not completely disregard operational costs after the prescribed final time T .
The variable NO will be automatically assigned to take the value of the OPEX cost of the
previous year.

4.6 Modelling Randomly Constrained CO2 Capture

The above model presents the interest of determining optimal decisions in a framework in which
capture, transportation, and sequestration are all considered simultaneously. However, in prac-
tice, it may be the case that the amount of CO2 capture that can be built is limited by other
factors. The model we propose above can be adopted without too much difficulty to cover the
case where the cap on the amount of CO2 we sequester comes from the limit on CO2 capture.

To amend the model previously shown, one makes it such that the capture decision is no
longer a variable. That is, our new decision at time t is

xt = (sdt , pdt , qdt ).

The random information is now denoted by ˜cd t . This is instead of Ct (the CO2 production) as
in the the previous model. The random variable ˜cd t will have its image in R

a⋅K
+ and ˜cd t ,cl ,k will

denote the amount of CO2 capture capacity that is added at a cluster cl at time t from some
industrial process k.

Equations (1)-(15) of the previous section now only need to be modified by:

• Swapping cd
(1)
t ,cl ,k

, cd
(2)
t ,cl ,k

for ˜cd t ,cl ,k in all the equations.

• Eliminating constraints (2), (3)

In our case, we will obtain the random variable ˜cd t by using a range for conceivable CO2 cap-
tures at each cluster. This data was obtained through expert solicitation and can be found in the
github linked at the start of this report. The ranges in the data would lead to a scenario count
of the order of 1030. To properly incorporate this data we make the following simplifications.

• We suppose that, in each time step, the amount of CO2 capture of each type k either
increases by the difference between the maximum range of CO2 capture in the previous
time step and the maximum amount of CO2 production of the next time ep. Alternatively,

14



4.6 Modelling Randomly Constrained CO2 Capture 4 THE MODEL

we suppose that it could stay the same as in the previous time step. If we write mt ,cl ,k

for the maximum amount of CO2 capture at time stage t at cluster cl of type k this would
correspond to

˜cd t ,cl ,k = X ⋅ (mt ,cl ,k −mt−1,cl ,k ) ∀t , cl , k.

Here X ∼ B (1/2) is a random variable following a Bernoulli distribution of parameter 1/2
and we define m−1,cl ,k ∶= 0.

• We link the CO2 capture types of all the different clusters in the sense that we supposed
that for each time step t either

˜cd t ,cl ,k > 0 ∀k, cl or ˜cd t ,cl ,k < 0 ∀k, cl .

This would reflect the phenomenon that, if one kind of CO2 capture increased in a certain
cluster, then it would be somewhat reasonable to suppose that the reason for the increase
could be extrapolated to all other clusters.

15
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5 Model Specification

In order to be able to run our model, we must take values for all the parameters and sets that
are provided in the previous part. Here we will explain where our data is coming from and how
we have arrived at the assignment of different variables.

5.1 Clusters and Sequestration Sites

For this project, we will be taking the clusters and sites to be those identified in Figure 1,

C L = {St. Fergus, Grangemouth, Teeside, Humberside, Merseyside, South Wales}
SQ = {Nothern North Sea, Central North Sea, Southern North Sea, East Irish Sea}

We note again that we have simplified the setup of the sequestration sites as each section of
the sea involves dozens of sites that each have unique capacities.

5.2 Shipping

In terms of ships, we base our prices off of the cost for low-pressure transport, which is the
central case considered [2]. On page 25 of this article there is formula by which we can obtain
the CAPEX of various different kinds of ships.

Based on the information on page 31 of this article we estimate that the ratio of OPEX for
shipping (in our case fuel cost, harbor fees, and ship OPEX as we include liquefaction in the
capture costs) to that of ship CAPEX is 34/14 for a 20 year period. Assuming this ratio is fixed
for each kind of ship we obtain from the CAPEX prices for each ship their respective OPEX
prices.

To calculate the maximum amount of CO2 transfer of a given ship of type sp between two
locations cl , cs we take

stcl ,cs,sh =
years×operational hours per year

(2 ⋅
d(cl ,cs)

speed of ship +unloading and loading time)
×capship

Where we take a time period of 5 years and the values of each of the other variables are taken
from page 25 of [2] (8322h,15nm/h,55h) and the distance of the shipping routes between each
port is taken from the appended excel sheet in [2]. We also need to calculate the distance of a
shipping route between a port and a given sequestration site. To do so we use the coordinates
of each port and the approximate central point of a sequestration site, then we will approximate
the distance a ship would have to travel using Google Maps.

Using the maximum amount of CO2 a given ship can transport between two locations and
knowing the OPEX per ship we calculate

soccl ,cs,sh =
OPEXsh

stcl ,cs,sh

A final adjustment that is required is that of currency conversion. We have taken all these prices
from £ in 2019 to £ in 2021 using Mathematica.
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5.3 Piping

To obtain the price of different types of pipes, their capital cost per mile built and their capacity,
we use the work of Heddle et. al [6] who estimate costs for onshore pipes based on the prices
of natural gas pipes.

We take the OPEX cost to be OPEX = $3100 yr/km, independently of pipeline diameter ([6]
page 22). It is worth noting that prices do vary on this matter through the literature such as
in Mikunda’s work [9], where on page 2414 a price of £7000 yr/km is given. For the capacity,
cap(sp), of each kind of pipe and their CAPEX prices per km, we use the information on [6]
pages 19 and 22 respectively. Using this information we can derive the operating cost as,

poccl ,cs,sp =
years×OPEX×d(cl , cs)

cap(sp) ,

where the unit of the above term is $/M tCO2. Furthermore, it has been estimated that the
price of offshore pipelines may be approximately 50% higher than onshore pipelines (see [9]
page 2414). Thus we multiply the CAPEX price by a factor of 1.5 as we only consider offshore
pipelines. Finally, these prices are in $ for 2003, so we transfer them to £ for 2021.

5.4 Capture and Sequestration Costs

As for the price of capture we set the CAPEX for direct air capture to be $780 in 2018 dollars for
a plant with a capture capacity of 1M tCO2/year based on Keith’s calculations [8] (page 1589).
To calculate the operation costs related to capturing 1tCO2/year we take the mean of the esti-
mate of $97−232 year/tCO2 and convert these amounts from $ in 2018 to £ in 2021.

For the medium cost CO2 we use a price of capture for 1tCO2 to be equal to $74 in 2013 based
on the cost analysis for NGCC powerplants found in page 5 of Rubin’s work [11]. We assign
the cheap capture option’s OPEX to be half of this per tonne of CO2. Based on the results on
[10] (page 27) we set a price of £30/MWh for the CAPEX costs of capture for both the medium
and low-cost CO2 capture. In this same article, a cost of £37/tCO2 captured and of £75/MwH is
estimated. Thus we use as a rough approximation a cost of 2tC 02/M wh captured which leads
us to an estimate of £150/tCO2 captured for CAPEX.

To all of these capture prices, we add a conditioning cost of 5.3 C/tCO2 based on [10] page 6
(these are liquefaction costs but for simplicity, we estimate a similar cost for conditioning of CO2

for pipeline transport).

As for sequestration costs we use the CAPEX of 120M C and OPEX of 6M C/year based
on the prices given for an offshore DOGF with 66MT CO2 capacity in [10] page 25. From here
we set

qcc =
120
66

M C/M tCO2; qoc =
6∗ year s

66
M C/M tCO2.

Both the sequestration and conditioning prices are in 2011 C and we convert them to £ in 2021
using Mathematica.

17



6 XPRESS AND COMPUTATIONAL COMPLEXITY

Part IV

Simulations and Results

"‘Obvious’ is the most dangerous
word in mathematics."

Eric Temple Bell

Now that we have constructed a model to look to build the optimal infrastructure, we will utilise
this part of the report to explore how we then built a program to simulate and obtain solutions to
this model. Initially, when we built the model we were looking at the case where CO2 production
was stochastic. Upon receiving the data for our model we changed this to look at the case
where instead it is CO2 capture was instead stochastic. We also introduce a nodal formulation
of the model which allows us to recover optimal decisions for t > 0. Our implementation in the
programme FICO Xpress led to many large scenario cases. Therefore we will also explore the
techniques and thought processes that were implemented for the programme to work quickly
and interestingly.

6 Xpress and Computational Complexity

For this project, to write the programme, we were advised to use FICO Xpress. This is a soft-
ware package where the user writes code in a language called Mosel and an optimization can
be ran. After initially writing a deterministic version of the model into Xpress, which we were
able to run well, we looked to implement the stochastic element into the model. Unfortunately,
we found that Xpress no longer had a maintained package that allowed variables to be declared
as stochastic and this led us to have to rethink how we would implement our programme effi-
ciently. An extended deterministic model which in some way incorporated probabilities was the
necessary implementation to make, however led to the question of how to stop the model from
anticipating the perfect future of the model. The work of Ahmed [1] informed our choice to use
non-anticipativity constraints and use a nodal formulation within the model build.

6.1 Nodal Formulation

As was noted previously, the Multistage Stochastic Linear Programming (MSSLP) only returns
the optimal initial decision x0 and subsequent decisions are ill-defined. To circumvent this issue
we take advantage of the fact that our random variables are finitely distributed. The crucial
idea is to view solutions as functions of the possible scenarios. Since our random variables are
discrete we have that for each t the random information ξt takes values in the finite set At . Let
us set

T ∶= A1×⋯× AT , x = (x1, ..., xT ), ξ ∶= (ξ1, ...,ξT ),
and consider the constraint set

S(x,ξ) ∶= S1(x0,ξ1)×⋯×ST (x0, ..., xt−1,ξT ) ⊂ Rd×T
.

We also define the set of scenarios equal up to time t to be the set of pairs

It ∶= {(sc, sc
′) ∈T

2∣sci = sc
′
i , i = {0, ..., t}}.
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Where the constraint set is determined by the same constraints as in the previous sections.
Then we consider the nodal formulation

arg max
x

∑
sc∈T

(P(ξ = sc) ⋅
T

∑
t=0

bt x
sc
t ) (16)

x ∈ S(x, sc) t = 0, ..., T (17)

x
sc
t = x

sc ′

t ∀(sc, sc
′) ∈It . (18)

Where it is important to note that, the object x that is a solution to our problem,

x ∶T → R
d×T

; x(sc)→ (xsc
0 , ..., x

sc
T ),

is now a function of the scenarios. Additionally we comment on the appearance of the extra
nonanticipativity constraint in (18). This constraint stipulates that decisions cannot be made as
if we knew the future, that is, we must act equally up to time t if we observe the same reality up
to time t .

Equations (16)-(18) tell us for each scenario the optimal decisions not only at step 0 but also all
the way to time step T and are thus the equations we wish to solve. Additionally, we comment
on the appearance of the extra non-anticipativity constraint in (18). This constraint stipulates
that decisions cannot be made as if we knew the future, that is, we must act equally up to time t
if we observe the same reality up to time t . Note that the non-anticipativity constraint (18) may
add considerable computational complexity to out problem and in the next sections we describe
how to efficiently implement this constraint.
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7 Stochastic Programme Build

In our initial simulations, though we had eliminated the need to include the CAPEX for carbon
capture we still included the OPEX for capture. In this situation we saw that our model with the
nodal formulation ran very quickly. The output of the model however was not very interesting
as essentially all the money was bein spent to be able to pay for the CO2 capture and not to
construct the network of transportation.

After some consideration, we removed the OPEX cost as well and this led to the programme
running for a much longer time. This was due to it now being able to make more complex deci-
sions with regards to transportation without the budget being engulfed in capture OPEX costs.
We’d now gone to the opposite end of the spectrum in terms of run time and therefore needed
to look into ways in which we could reduce the number of scenarios that the programme was
considering.

7.1 Reduction of Computational Complexity

In order to reduce the complexity, we considered two aspects of the programme: the number
of decision variables and the number of constraints.

Firstly, we reduced the number of decision variables. To do this we used what is known in
Mosel as dynamic arrays. Using this datatype it is possible to only define the variables that you
actually need. In our case, this means that we did not define the decision variables for piping
and building pipes in the locations where our data says that it is not possible.

Secondly, we reduced the number of constraints. To do this we focused on the non-anticipativity
constraints, as these were the majority of the constraints. Initially, we implemented these con-
straints as follows: for each time t we check all pairs of scenarios. If the scenarios are equal
up to time t , we constrain the decisions at that time to be equal. This results in a collection
of dense networks of constraints, as visualised in the left hand side of Figure 2. To make this
more efficient, we did the following; for each time t we divide the scenarios into sets that are
equal up to time t and choose a representative for each of them. To do this we use a method
where we do not need to compare each pair, but use properties of the representation of the
scenarios that we use in the Mosel code. We then give constraints in the form where we set
the decisions in time t equal to the decision of the representative scenario of the collection the
scenario is in. This results in star networks of constraints as visualised on the right-hand side
of Figure 2.

7.2 CAPEX vs OPEX

Initially, we had set the OPEX to CAPEX ratio within the model to 5%, as an IEA report [7]
indicated that this was the percentage of OPEX that could be attributed to annual CAPEX.
However, running the model with this assumption it became clear that the CO2 capture was far
from optimal. This led to us simulating the model with the ratio of OPEX to CAPEX variable for
a fixed budget. The results of this simulation showed that a ratio of 40% CAPEX and 60% OPEX
were optimal. For this reason, in future simulations, we used these values.
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Figure 2: Constraint Networks

7.3 Visulation of Results

To complete this section, we now present a visualisation of the results run for three-time steps
where we set an OPEX and CAPEX of

MC = (200, 100, 0); MO = (0, 100, 350)

in million £ for each time step. The time span of the model corresponds to 2025−2050 were the
first two time steps correspond to five year periods and the last one to 15 years. The reason
why an OPEX budget is incrementally added towards the end of the simulation is that no OPEX
need to be used in the initial time step where all the infrastructure is still being built.

Below we present figure 3 showing the expected capture, production and sequestration rate
of CO2 per year in the final two-time steps (in the initial time step all the infrastructure is still
being set up and thus, no CO2 can stored). The green arrows correspond to CO2 transported
through pipes and the (very faint) yellow to CO2 transported through ships. As we can see the
model presents a strong preference for pipe transport and transports CO2 between nearby clus-
ters to sequestration sites. We note further that no transport between two different industrial
clusters is used despite the model allowing for it.

We also include below a bar chart, figure 4, showing the expected amount of CO2 sequestered
from each cluster during each of the last two time steps, and where the first bar corresponds to
the total amount of CO2 available for sequestration. We note that with the budget supplied the
only 13.6% of the CO2 captured is sequestered. This suggests the need for a larger budget to
be able to capture a satisfactory amount of CO2 .
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Capture

Production

Storage

(a) 2030−2035 (b) 2035−2050

Figure 3: Rates of CO2 capture, transportation and storage t = 1, 2
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8 Sensitivity Analysis

In the following section, we introduce some measures that may be used to analyze the sta-
bility of the model under small changes in some of the parameters. Though we did not have
time to implement these tools in their work they could be an interesting part of a future analysis.

We first introduce two parameters λ, r which will serve to parametrize:

• Different sizes of the total budget which we parametrize by λ ∈ [1− ε, 1+ ε].

• Different ratios of OPEX to CAPEX which we parametrize by r ∈ [1
2
− ε, 1

2
+ ε].

Where the parametrization is given by

MCt (λ) ∶= λMCt (1); MOt (λ) ∶= λMOt (1);
MOt (λ, r )

MCt (λ)+MOt (λ, r ) ∶= r.

That is

MOt (λ, r ) = r MCt (λ)
(1− r )

Consider a decision x(λ, r,ξ) for some values of λ, r and note that this decision is a random
variable as it depends on the realization of ξ. Then we wish to study the behaviour of

1. The decision metric

∥x(λ, r,ξ)∥∞ ∶=
T

∑
t=0

⎛
⎜
⎝
∑

cl∈C L

∑
cs∈C L∪SQ

∑
sh∈Sh

»»»»»sd
(2)
t ,cl ,cs,sh

»»»»»+ ∑
cl∈C L

∑
cs∈C L∪SQ

∑
sp∈Sp

»»»»»pd
(1)
t ,cl ,cs,sh

»»»»»+ ∑
sq∈SQ

»»»»»qd
(1)
t ,sq

»»»»»
⎞
⎟
⎠

.

Where for simplicity in the expression we omit the dependency on λ, r,ξ of the right hand
side of the above equation. This metric aims to measure the total contribution of the deci-
sions overall time that are made. Note that we only include in this norm the component of
each decision that measures how we allocate resources. This is because these terms all
have the same units (tCO2) and represent effectively how we build infrastructure. It could
be interested to calculate

m(λ, r ) ∶= Eξ [∣∣x(λ, r,ξ)− x(λ0, r0,ξ)∣∣∞] .

Where x0 is taken as a base case in which the CO2 production remains unchanged
throughout time over all clusters. Note that the integral in the cases we simulate reduces
to a finite sum weighted by the probabilities of the different scenarios.

2. The average amount of CO2 sequestered over each sequestration location and the total
amount of CO2 sequestered

coqsq (λ, r ) ∶=
T

∑
t=0

Eξ [qd
(2)
t ,sq (λ, r,ξ)] ; COQ(λ, r ) ∶=

T

∑
t=0

∑
sq∈SQ

Eξ [qd
(2)
t ,sq (λ, r,ξ)] (19)

3. The average amount of CO2 captured at each industrial cluster and the average amount
of each type captured (easy, medium, direct air capture)

coccl (λ, r ) ∶=
T

∑
t=0

∑
k∈K

Eξ [cd
(2)
t ,cl ,k

(λ, r,ξ)] (20)

cock (λ, r ) ∶=
T

∑
t=0

∑
cl∈C L

Eξ [cd
(2)
t ,cl ,k

(λ, r,ξ)] (21)
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4. The average amount of CO2 piped and shipped

cos(λ, r ) ∶=
T

∑
t=0

∑
cl∈C L

∑
cs∈C L∪SQ

∑
sh∈Ssh

Eξ[sd
(3)
t ,cl ,cs,sh

(λ, r,ξµ)] (22)

cop(λ, r ) ∶=
T

∑
t=0

∑
cl∈C L

∑
cs∈C L∪SQ

∑
sp∈SP

Eξ[pd
(2)
t ,cl ,cs,sp

(λ, r,ξ)] (23)

5. For some fixed representative values of λ, r it would be interesting to show as was done
in Figure 3 a visualization of the average quantity of CO2 captured, transported through
pipes and ships, and sequestered throughout time. That is,

coct ,cl (λ, r ) ∶= ∑
k∈K

Eξ [cd
(2)
t ,cl ,k

(λ, r,ξ)] (24)

cost ,cl ,cs(λ, r ) ∶= ∑
sh∈Ssh

Eξ[sd
(3)
t ,cl ,cs,sh

(λ, r,ξ)] ∀t , cl , cs (25)

copt ,cl ,cs(λ, r ) ∶= ∑
sp∈SP

Eξ[pd
(2)
t ,cl ,cs,sp

(λ, r,ξ)] ∀t , cl , cs (26)

coqt ,sq (λ, r ) ∶= Eξ [qd
(2)
t ,sq (λ, r,ξ)] (27)
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Part V

Conclusions and Discussion

"The essence of mathematics lies
in its freedom."

Georg Cantor

The climate crisis leaves humanity no choice but to implement decisions to decrease our carbon
footprint. CCUS has been identified as an important method of doing so and motivates the
need for studies to determine its optimal implementation. In this work, we have considered a
model that determines this optimal implementation while allowing for the presence of unknown
information in the form of random variables for CO2 emissions and, separately, for CO2 capture.

Simulations of the model were run in this second case and showed that a larger OPEX than
CAPEX will be needed than what was found in the literatur to be able to support an effective
roll-out. This consideration is important when it comes to policy decisions as to budget allo-
cation and must be taken into account. Furthermore, it was found that for a total budget of
£750M only a small percentage of CO2 was captured, even without accounting for the price of
CO2 capture and storage which will be substantially higher than the cost of transportation and
sequestration. This suggests that a larger budget than the £1.3 billion proposed by the gov-
ernment [12] is required. Future work could also look to determine this number, the stochastic
model we propose allows for this by simply incorporating the budget as a decision variable.

It is important to note that throughout this report we have constructed a model which has
made many assumptions with regards to prices, infrastructure, and political decisions. These
assumptions have been detailed in full with the hopes that a future study could build upon them.
The points below form the closing of what only looks to be the beginning of how we can use
mathematics to optimize infrastructure for CO2 removal and how future work may look to refine
the modelling and simulations undertaken within this report.

Simplification Unpacking

For future work, a starting point could be to consider the clusters and sequestration sites in a
more fine-grained fashion. In our work, we’ve made the simplification of considering 6 clusters
and 4 sequestration sites. Each of these can be split into several production sites and seques-
tration regions. Furthermore, for reasons of computational complexity, it was necessary to link
CO2 capture from different industrial clusters. It would be interesting to try to implement a model
in which some of these simplifications are unnecessary and compare any obtained results with
the model proposed here. Further, in terms of sequestration, we have made the assumption
that there will always be space somewhere in the region. However, at individual sites within
each part of the sea, it is often not possible to determine the exact capacity of a site until the
CO2 starts to be sequestered. Thus, it could be interesting to introduce another random variable
to control the capacity available at each of these sequestration sites.

Another key simplification that could be unpacked, would be that of the time periods. Here
we have modelled 5 year time gaps between the moment infrastructure begins being built and
the time its construction is finalised. The details of what is happening during that time are
not elucidated. In reality, however different infrastructure could take a variety of times to build
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and it may be expedient to introduce a time step of a different size to account for this. Finally
economies of scale were only considered in an averaged sense and an implementation that
looked to include these explicitly could be considered in the future.

Political-Mathematical Complexities

As a mathematician, it is often our role to become as objective as possible when building a
model. Within this report we have allowed more recent political decisions, namely that of the
decision of where CCUS will be deployed first, to be filtered into the simulations and data. The
stability of the model and how the infrastructure is optimized for deployment will always depend
on the budgeting constraints. This amount in the real world could become very varied based
on the environmental interests of whichever political parties are in power within the country at
the time. In addition to this, the idea of Scottish independence could loom and potentially take
place before the end of implementation in 2050. This could raise questions about which clusters
can still be linked and will have funding.

We hope that within this report objectivity has been conserved and could withstand the changes
that may happen as described above. It is not without note however that this model has been
built with the intention that CCUS will be deployed with full backing and intentions to follow
through. This perhaps may have caused minor bias in terms of implementation should a deci-
sion to volte-farce on usage of CCUS take place.

One further consideration we believe would be important to extend the model, would be to
look at what a reasonable budget would be in order for CCUS capture costs to be included.
When we initially did run our model with the CAPEX and OPEX costs associated with the cap-
ture of CO2 included, we saw that not much CO2 would end up being sequestered. This is
because the building and maintenance of the initial capture costs would be so high that the
budget would be engulfed. This means that one could potentially ‘rejig’ the constraints that we
have set within the model and the programme to instead have a minimum threshold of CO2 that
must be captured and sequestered and see what budget would be required for this.

The Human Touch

One final item that we have considered along the journey of this project and within this report,
something which we believe is vital to the success of optimal infrastructure planning, is that
there must always be some sort of human touch when modelling. Throughout there have been
moments when intuition has kicked in, such as looking to change CAPEX to OPEX ratios, where
we have been able to make improvements to the model by the information that has been fed
in. Throughout future planning of CCUS implementation, human oversight must remain part of
the process, with the model being further and further defined. This will help with interpretation
of results and allow for accountability of the model usage. Why is this important? Quite simply
because if left to run without interpretation and refinement, some poor decisions could be made
around the infrastructure build of CCUS. All in the name of a net-zero carbon future.
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